Skip to main content
Log in

Gas adsorption on the Zn–, Pd– and Os–doped armchair (5,5) single–walled carbon nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorption of NO2, NH3, H2O, CO2 and H2 gases on the undoped, Zn–, Pd– and Os–doped armchair (5,5) single–walled carbon nanotubes (SWCNTs) were studied using density functional method. The adsorptions of these five gases on the Zn–, Pd– and Os–doped SWCNTs are obviously stronger than on the undoped SWCNT and their adsorption abilities are in the same order: NO2 > NH3 > H2O > CO2 > H2. Adsorption energies for all the studied gases on the undoped, Zn–, Pd– and Os–doped SWCNTs computed at the B3LYP/LanL2DZ level are reported.

The adsorption of gaseous NO2, NH3, H2O, CO2 and H2 on the undoped, Zn–, Pd– and Os–doped armchair (5,5) single–walled carbon nanotubes (SWCNTs) were investigated using density functional method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Nature 363:603–605

    Article  CAS  Google Scholar 

  3. Burchell TD (1996) Carbon materials for advances technologies. Elsevier Science Ltd, Kidlington

    Google Scholar 

  4. Meyyappan M (2005) Carbon nanotubes: science and applications. CRC, Boca Raton, FL

    Google Scholar 

  5. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic, New York

    Google Scholar 

  6. Gogotsi Y (2006) Carbon Nanomaterials. CRC, Boca Raton, FL

    Book  Google Scholar 

  7. Popov V, Lambin P (2006) Carbon Nanotubes. Springer, Berlin

    Book  Google Scholar 

  8. Peng S, Cho K, Qi P, Dai H (2004) Chem Phys Lett 387:271–276

    Article  CAS  Google Scholar 

  9. Zhao JJ, Buldum A, Han J, Lu JP (2002) Nanotechnol 13:195–200

    Article  CAS  Google Scholar 

  10. Yim WL, Gong XG, Liu ZF (2003) J Phys Chem B 107:9363–9369

    Article  CAS  Google Scholar 

  11. Santucci S, Picozzi S, Di Gregorio F, Lozzi L, Cantalini C, Valentini L, Kenny JM, Delley B (2003) J Chem Phys 119:10904–10910

    Article  CAS  Google Scholar 

  12. Bauschlicher WC, Ricca A (2003) Phys Rev B 70:115409–115416

    Article  Google Scholar 

  13. Han SS, Lee HM (2004) Carbon 42:2169–2177

    Article  CAS  Google Scholar 

  14. Darkrima FL, Malbrunota P, Tartaglia GP (2002) Int J Hydrogen Energy 27:193–202

    Article  Google Scholar 

  15. Wanbayor R, Ruangpornvisuti V (2007) Chem Phys Lett 441:127–131

    Article  CAS  Google Scholar 

  16. Wanbayor R, Ruangpornvisuti V (2008) Carbon 46:12–18

    Article  CAS  Google Scholar 

  17. Ruangpornvisuti V (2010) J Mol Model 16:1127–1138

    Article  CAS  Google Scholar 

  18. Wanno B, Du AJ, Ruangpornvisuti V, Smith SC (2007) Chem Phys Lett 436:218–223

    Article  CAS  Google Scholar 

  19. Yeung CS, Liu LV, Wang YA (2008) J Phys Chem C 112:7401–7411

    Article  CAS  Google Scholar 

  20. Yeung CS, Liu LV, Wang YA (2007) J Theor Comput Nanosci 4:1108–1119

    CAS  Google Scholar 

  21. Tian W, Liu LV, Wang Y (2006) Phys Chem Chem Phys 8:3528–3539

    Article  CAS  Google Scholar 

  22. Zhoa JX, Ding YH (2008) Mater Chem Phys 110:411–416

    Article  Google Scholar 

  23. Kong J, Chapline MG, Dai H (2001) Adv Mater 13:1384–1386

    Article  CAS  Google Scholar 

  24. Yang YX, Singh RK, Webley PA (2008) Adsorption 14:265–274

    Article  CAS  Google Scholar 

  25. Yang CK, Zhao J, Lu JP (2004) Nano Lett 4:561–563

    Article  Google Scholar 

  26. Dag S, Durgun E, Ciraci S (2004) Phys Rev B 69:121407(R)

  27. Wang G, Huang Y (2009) J Phys Chem C 112:9128–9132

    Article  Google Scholar 

  28. An W, Turner H (2009) Chem Phys Lett 482:274–280

    Article  CAS  Google Scholar 

  29. Andzelm J, Govind N, Maiti A (2006) Chem Phys Lett 421:58–62

    Article  CAS  Google Scholar 

  30. Xiao H, Li SH, Cao JX (2009) Chem Phys Lett 483:111–114

    Article  CAS  Google Scholar 

  31. Wang R, Zhang D, Sun W, Han Z, Liu C (2007) J Mol Struct THEOCHEM 806:93–97

    Article  CAS  Google Scholar 

  32. Peng C, Cho K (2003) Nano Lett 3:513–517

    Article  CAS  Google Scholar 

  33. Zhang Y, Zhang D, Liu C (2006) J Phys Chem B 110:4671–4674

    Article  CAS  Google Scholar 

  34. Bai L, Zhou Z (2007) Carbon 45:2105–2110

    Article  CAS  Google Scholar 

  35. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  38. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  39. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  40. Frisch MJ et al. (2004) Gaussian03, Rev D.02, Gaussian Inc, Wallingford, CT

  41. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 9:839–845

    Article  Google Scholar 

  42. Marichev VA (2009) Physicochem Eng Aspects 348:28–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support (Grant No. MRG5180141) to BW by the Thailand Research Fund is gratefully acknowledged. Financial support from the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education is gratefully acknowledged. We also thank the Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, the Thailand Research Fund (TRF), the National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, for providing facility. The Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok, Thailand is also acknowledged for partly financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vithaya Ruangpornvisuti.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table S1

Adsorption energy (ΔE ads) of nitrogen dioxide on ground–state and spin–polarized surfaces of the Zn–, Pd– and Os–doped SWCNTs, computed at the B3LYP/LanL2DZ level (DOC 31 kb)

Table S2

Principal vibrational frequencies and their corresponding intensities of pristine, Zn–, Pd– and Os–doped SWCNTs, computed at the B3LYP/LanL2DZ level (DOC 34 kb)

Table S3

The selected geometrical parameters for the pristine, Zn–, Pd– and Os–doped SWCNTs and differences of their adsorption complexes with studied gases, computed at the B3LYP/LanL2DZ level (DOC 58 kb)

Table S4

NBO charges (in e) for adsorption of gases on the pristine, Zn–, Pd– and Os–doped SWCNTs, computed at the B3LYP/LanL2DZ level (DOC 43 kb)

Fig. S1

The computed IR spectra of the B3LYP/LanL2DZ–optimized structures of the pristine, Zn–, Pd– and Os–doped SWCNTs (DOC 371 kb)

Fig. S2

The HOMOs and LUMOs of the adsorption complexes of various gases with Zn–doped SWCNT (DOC 635 kb)

Fig. S3

The HOMOs and LUMOs of the adsorption complexes of various gases with Pd–doped SWCNT (DOC 648 kb)

Fig. S4

The HOMOs and LUMOs of the adsorption complexes of various gases with Os–doped SWCNT (DOC 580 kb)

Fig. S5

The density of states determined for the Zn–doped SWCNTs and their adsorption complexes with gases (DOC 956 kb)

Fig. S6

The density of states determined for the Pd–doped SWCNTs and their adsorption complexes with gases (DOC 1011 kb)

Fig. S7

The density of states determined for the Os–doped SWCNTs and their adsorption complexes with gases (DOC 1074 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabtimsai, C., Keawwangchai, S., Wanno, B. et al. Gas adsorption on the Zn–, Pd– and Os–doped armchair (5,5) single–walled carbon nanotubes. J Mol Model 18, 351–358 (2012). https://doi.org/10.1007/s00894-011-1047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1047-y

Keywords

Navigation