Skip to main content
Log in

DFT studies of the phenol adsorption on boron nitride sheets

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We perform first principles total energy calculations to investigate the atomic structures of the adsorption of phenol (C6H5OH) on hexagonal boron nitride (BN) sheets. Calculations are done within the density functional theory as implemented in the DMOL code. Electron-ion interactions are modeled according to the local-spin-density-approximation (LSDA) method with the Perdew-Wang parametrization. Our studies take into account the hexagonal h-BN sheets and the modified by defects d-BN sheets. The d-BN sheets are composed of one hexagon, three pentagons and three heptagons. Five different atomic structures are investigated: parallel to the sheet, perpendicular to the sheet at the B site, perpendicular to the sheet at the N site, perpendicular to the central hexagon and perpendicular to the B-N bond (bridge site). To determine the structural stability we apply the criteria of minimum energy and vibration frequency. After the structural relaxation phenol molecules adsorb on both h-BN and d-BN sheets. Results of the binding energies indicate that phenol is chemisorbed. The polarity of the system increases as a consequence of the defects presence which induces transformation from an ionic to covalent bonding. The elastic properties on the BN structure present similar behavior to those reported in the literature for graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Natl Acad Sci USA 102:10451–10453

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  3. Chigo Anota E, Salazar Villanueva M (2009) Sup y Vac 22:23–28

    Google Scholar 

  4. Chigo Anota E, Hernández Cocoletzi H, Rubio Rosas E. Eur Phys J D (accepted 2011)

  5. Young JA (2007) J Chem Educ 84:759

    Article  CAS  Google Scholar 

  6. Fraser CG (1921) J Phys Chem 25:1–9

    Article  CAS  Google Scholar 

  7. Tripathi DG (printed and published) (2008) In: Roy A (ed for and on behalf of Tulip Diagnostics(P) Ltd) J Hyg Sci I(IV):1–16

  8. Hickey AJ, Swift D (2001) In: Baron PA Willeke K (eds) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edn. Wiley, New York

  9. McDonnell G, Denver Russell AD (1999) Clin Microbiol Rev 12:147–179

    CAS  Google Scholar 

  10. Kim KS, Choi SJ, Ihm SK (1983) Ind Eng Chem Fundam 22(2):167–172

    Article  CAS  Google Scholar 

  11. Hamaidi-Maouche N, Bourouina-Bacha S, Oughlis-Hammache F (2009) J Chem Eng Data 54:2874–2880

    Article  CAS  Google Scholar 

  12. Zuo X, Peng C, Huang Q, Song S, Wang L, Li D, Fan C (2009) Nano Res 2:617–623

    Article  CAS  Google Scholar 

  13. Chigo Anota E, Escobedo Morales A, Hernández Cocoletzi G. Nanotechnol (submitted 2011)

  14. Akcöltekin S, Bukowska H, Peters T, Osmani O, Monnet I, Alzaher I, d’Etat BB, Lebius H, Schleberger M (2011) Appl Phys Lett 98(103103):1–3

    Google Scholar 

  15. Martinez JL, Cabria I, Lopez MJ, Alonso JA (2009) J Phys Chem C 113:939–941

    Article  CAS  Google Scholar 

  16. You Y, Ni Z, Yu T, Shen T (2008) App Phys Lett 93:16311–163113

    Google Scholar 

  17. Chigo Anota E (2009) Sup y Vac 22:19–23

    Google Scholar 

  18. Nava Contreras C, Hernández Cocoletzi H, Chigo Anota E (2010) J Mol Model. doi:10.1007/s00894-010-0914-2

  19. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2010) Phys Status Solidi C 7:2252–2255

    Article  Google Scholar 

  20. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2010) Phys Status Solidi C 7:2559–2561

    Article  Google Scholar 

  21. Hernández Rosas JJ, Ramírez Gutiérrez RE, Escobedo-Morales A, Chigo Anota E (2010) J Mol Model. doi:10.1007/s00894-010-0818-1

  22. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2011) J Nanosci Nanotechnol. doi:10.1166/jnn.2011.3441

  23. Solanes Rivas CF, Hernández Cocoletzi H, Chigo Anota E. J Mat Res (submitted 2011)

  24. Solanes Rivas CF, Salazar Villanueva M, Escobedo Morales A, Chigo Anota E. Carbon (submitted 2011)

  25. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  26. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689–746

    Article  CAS  Google Scholar 

  27. Kohn W (1999) Rev Mod Phys 71:1253–1266

    Article  CAS  Google Scholar 

  28. Chigo Anota E, Rivas Silva JF (2005) Rev Col Fís 37:405–419

    Google Scholar 

  29. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  30. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  31. Delley B (1996) J Phys Chem 100:6107–6110

    Article  CAS  Google Scholar 

  32. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  33. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, USA, p 300

    Google Scholar 

  34. Lin Y, Williams TV, Connell JW (2010) J Phys Chem Lett 1:277–283

    Article  CAS  Google Scholar 

  35. Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y, Golberg D (2010) Nano Lett 10:5049–5055

    Article  CAS  Google Scholar 

  36. Alem N, Erni R, Kisielowski C, Rossell MD, Gannett W, Zettl A (2009) Phys Rev B 80(155425):1–7

    Google Scholar 

  37. Leenaerts O, Partoens B, Peeters FM (2008) Appl Phys Lett 93:193107–193109

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by projects: VIEP-BUAP (CHAE-ING11-I), FIQ-BUAP (2010–2011), Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177), Cuerpo Académico Física Computacional de la Materia Condensada (BUAP-CA-191) and VIEP-BUAP--EXC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Chigo Anota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galicia Hernández, J.M., Cocoletzi, G.H. & Anota, E.C. DFT studies of the phenol adsorption on boron nitride sheets. J Mol Model 18, 137–144 (2012). https://doi.org/10.1007/s00894-011-1046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1046-z

Keywords

Navigation