Skip to main content
Log in

On the electronic properties of two-dimensional honeycomb GaInN and GaAlN alloys: a molecular analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have performed first principles total energy calculations to investigate the structural and the electronic properties of two-dimensional honeycomb GaAlN and GaInN alloys. Calculations were done using a coronene-like (C24H12) cluster and for different numbers of Ga, Al, and In atoms. The exchange and correlation potential energies were treated within the generalized gradient approximation (GGA). The bond length, dipole moment, binding energy, and gap between the HOMO and the LUMO are reported as a function of x. The stability of the structures depends on the site of the substituted atom; for example, when three Ga atoms are substituted, the GaInN alloy becomes unstable. The gap in the GaAlN increases from 3.76 eV (GaN) to 4.51 eV (AlN), and in the GaInN decreases to 2.11 eV. The biggest polarity occurs when eight and four Ga atoms are substituted, for GaAlN and GaInN, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  2. Zarea M, Sandler N (2007) Phys Rev Lett 99:256804–4

    Article  Google Scholar 

  3. Cocco G, Cadelano E, Colombo L (2010) Phys Rev B 81(4):241–412

    Article  Google Scholar 

  4. Bistritzer R, MacDonald AH (2010) Phys Rev B 81:245412–245419

    Article  Google Scholar 

  5. Bangert U, Bleloch A, Gass MH, Seepujak A, van den Berg J (2010) Phys Rev B 81:245423–11

    Article  Google Scholar 

  6. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YII, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Nat Nanotechnol 5:574–578

    Article  CAS  Google Scholar 

  7. Guimarães FSM, Costa AT, Muniz RB, Ferreira MS (2010) Phys Rev B 81:233402–233404

    Article  Google Scholar 

  8. Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S (2010) Phys Rev B 81:075433–075439

    Article  Google Scholar 

  9. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Natl Acad Sci USA 102:10451–10453

    Article  CAS  Google Scholar 

  10. Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Phys Rev B 80:155453–12

    Google Scholar 

  11. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2010) Phys Stat Solidi C 7:2252–2254

    Article  Google Scholar 

  12. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2010) Phys Stat Solidi C 7:2559–2561

    Article  Google Scholar 

  13. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448:457–460

    Article  CAS  Google Scholar 

  14. Hernández Cocoletzi H, Contreras Solorio DA, Arriaga J (2005) Appl Phys A 81:1029–1033

    Article  Google Scholar 

  15. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  16. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689–746

    Article  CAS  Google Scholar 

  17. Kohn W (1999) Rev Mod Phys 71:1253–1266

    Article  CAS  Google Scholar 

  18. Chigo Anota E, Rivas Silva JF (2005) Rev Col Fís 37:405–417

    Google Scholar 

  19. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  21. Delley B (1996) J Phys Chem 100:6107–6110

    Article  CAS  Google Scholar 

  22. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  23. Foresman JB, Frisch Æ (1996) In: exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, Wallingford, CT, p 70

    Google Scholar 

  24. Chigo Anota E, Hernández Cocoletzi H, Bautista Hernández A, Sánchez Ramírez JF (2011) J Comput Theor Nanosci 8:637–641

    Article  Google Scholar 

  25. Nagahama S, Yanamoto T, Sano M, Mukai T (2002) Phys Status Solidi 194:423–427

    Article  CAS  Google Scholar 

  26. Li S, Schörmann J, As DJ, Lischka K (2007) Appl Phys Lett 90(1–3):071903

    Article  Google Scholar 

  27. Liao Y, Thomidis C, Kao C, Moustakas TD (2011) Appl Phys Lett 98(1–3):081–110

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Vicerrectoria de Investigación y Estudios de Posgrado-Benemérita Universidad Autónoma de Puebla (CHAE-INGII-I), Facultad de Ingeniería Química- Benemérita Universidad Autónoma de Puebla (2010-2011), Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177) and Consejo Nacional de Ciencia y Tecnología, México (Grant No. 0083982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Chigo Anota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anota, E.C., Cocoletzi, H.H. On the electronic properties of two-dimensional honeycomb GaInN and GaAlN alloys: a molecular analysis. J Mol Model 18, 591–596 (2012). https://doi.org/10.1007/s00894-011-1043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1043-2

Keywords

Navigation