Skip to main content
Log in

Structural determinants of benzodiazepinedione/peptide-based p53-HDM2 inhibitors using 3D-QSAR, docking and molecular dynamics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

As a tumor suppressor, p53 protein regulates the cell cycle and is involved in preventing tumorgenesis. The protein level of p53 is under the tight control of its negative regulator human double minute 2 (HDM2) via ubiquitination. Therefore, the design of inhibitors of HDM2 has attracted much interest of research on developing novel anticancer drugs. Presently, two classes of molecules, i.e., the 1,4-benzodiazepine-2,5-diones (BDPs) and N-Acylpolyamine (NAPA) derivatives were studied by three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling approaches including the comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) as promising p53-HDM2 inhibitors. Based on both the ligand-based and receptor-guided (docking) alignments, two optimal 3D-QSAR models were obtained with good predictive power of q 2 = 0.41, r 2 pred = 0.60 for BDPs, and q 2 = 0.414, r 2 pred = 0.69 for NAPA analogs, respectively. By analysis of the model and its related contour maps, it is revealed that the electrostatic interactions contributed much larger to the compound binding affinity than the steric effects. And the contour maps intuitively suggested where to modify the molecular structures in order to improve the binding affinity. In addition, molecular dynamics simulation (MD) study was also carried out on the dataset with purpose of exploring the detailed binding modes of ligand in the HDM2 binding pocket. Based on the CoMFA contour maps and MD-based docking analyses, some key structural aspects responsible for inhibitory activity of these two classes of compounds were concluded as follows: For BDPs, the R1 and R3 regions should have small electronegativity groups; substituents R2 and R4 should be larger, and R3 substituent mainly involves in H-bonds forming. For NAPA derivatives, bulky and electropositive groups in ring B and ring A, small substituent at region P is favorable for the inhibitory activity. The models and related information, we hope, may provide important insight into the inhibitor-p53-HDM2 interactions and be helpful for facilitating the design of novel potent inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lane DP (1992) Nature 358:15–16

    Article  CAS  Google Scholar 

  2. Gudkov AV, Komarova EA (2007) Hum Mol Genet 16:R67–72

    Article  CAS  Google Scholar 

  3. Komarova EA, Gudkov AV (2001) Biochem Pharmacol 62:657–667

    Article  CAS  Google Scholar 

  4. Vogelstein B, Lane D, Levine AJ (2000) Nature 408:307–310

    Article  CAS  Google Scholar 

  5. Feki A, Irminger-Finger I (2004) Rev Oncol Hematol 52:103–116

    Article  Google Scholar 

  6. Kubbutat MH, Jones SN, Vousden KH (1997) Nature 387:299–303

    Article  CAS  Google Scholar 

  7. Kussie PH et al (1996) Science 274:948–953

    Article  CAS  Google Scholar 

  8. Wu X, Bayle JH, Olson D, Levine AJ (1993) Genes Dev 7:1126–1132

    Article  CAS  Google Scholar 

  9. Barak Y, Juven T, Haffner R (1993) OrenM. EMBO J 12:461–468

    CAS  Google Scholar 

  10. Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) Cell 69:1237–1245

    Article  CAS  Google Scholar 

  11. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al (1996) Science 274:948–953

    Article  CAS  Google Scholar 

  12. Michael D, Oren M (2003) Cancer Biol 13:49–58

    Article  CAS  Google Scholar 

  13. Chen F, Wang W, Wafik S (2010) El-Deiry. Biochem Pharmacol 80:724–730

    Article  CAS  Google Scholar 

  14. Vassilev LT (2004) Cell Cycle 3:419–421

    Article  CAS  Google Scholar 

  15. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004) Science 303:844–848

    Article  CAS  Google Scholar 

  16. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP (2009) Nat Rev Cancer 9:862–873

    Article  CAS  Google Scholar 

  17. Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y, Parrish DA, Deschamps JR, Wang S (2005) J Am Chem Soc 127:10130–10131

    Article  CAS  Google Scholar 

  18. Parks DJ, Lafrance LV, Calvo RR, Milkiewicz KL, Gupta V, Lattanze J, Ramachandren K, Carver TE, Petrella EC, Cummings MD, Maguire D, Grasberger BL, Lu T (2005) Bioorg Med Chem Lett 15:765–770

    Article  CAS  Google Scholar 

  19. Lu Y, Nikolovska-Coleska Z, Fang X, Gao W, Shangary S, Qiu S, Qin D, Wang S (2006) J Med Chem 49:3759–3762

    Article  CAS  Google Scholar 

  20. Chen L, Yin H, Farooqi B, Sebti S, Hamilton AD, Chen J (2005) Mol Cancer Ther 4:1019–1025

    Article  CAS  Google Scholar 

  21. Lu F, Chi SW, Kim DH, Han KH, Kuntz ID, Guy RK (2006) J Comb Chem 8:315–325

    Article  CAS  Google Scholar 

  22. Shangary S, Wang S (2008) Clin Cancer Res 14:5318–5324

    Article  CAS  Google Scholar 

  23. Koblish HK, Zhao S, Franks CF, Donatelli RR, LaFrance LV, Leonard KA, Gushue JM, Parks DJ, Calvo RR, Milkiewicz KL, Marugan JJ, Cummings Raboisson P, MD Grasberger BL, Lu T, Molloy CJ, Maroney AC (2006) Mol Cancer Ther 5:160–169

    Article  CAS  Google Scholar 

  24. Li Y, Wang YH, Yang L, Zhang SW, Liu CH (2006) J Mol Des 5:1–12

    Google Scholar 

  25. Li Y, Wang YH, Yang L, Zhang SW, Liu CH, Yang SL (2005) J Mol Struct 733:111–118

    Article  CAS  Google Scholar 

  26. Wang X, Yang W, Xu X, Zhang H, Li Y, Wang Y (2010) Curr Med Chem 17:2788–2803

    Article  CAS  Google Scholar 

  27. Wei SP, Ji ZQ, Zhang HX, Zhang JW, Wang YH, Wu WJ (2010) J Mol Model. doi:10.1007/s00894-010-0765-x

  28. Hardcastle IR, Ahmed SU, Atkins H, Farnie G, Golding BT, Griffin RJ, Guyenne S, Hutton C, Källblad P, Kemp SJ, Kitching MS, Newell DR, Norbedo S, Northen JS, Reid RJ, Saravanan K, Willems HM, Lunec J (2006) J Med Chem 49:6209–6221

    Article  CAS  Google Scholar 

  29. Stoll R, Renner C, Hansen S, Palme S, Klein C, Belling A, Zeslawski W, Kamionka M, Rehm T, Mühlhahn P, Schumacher R, Hesse F, Kaluza B, Voelter W, Engh RA, Holak TA (2001) Biochemistry 40:336

    Article  CAS  Google Scholar 

  30. Parks DJ, LaFrance LV, Calvo RR, Milkiewicz KL, Gupta V (2006) Bioorg Med Chem Lett 16:3310–3314

    Article  CAS  Google Scholar 

  31. Leonard K, Marugan JJ, Raboisson P, Calvo R, Gushue JM (2006) Bioorg Med Chem Lett 16:3463–3468

    Article  CAS  Google Scholar 

  32. Hayashi R, Wang D, Hara T, Iera J, Durell SR, Appella DH (2009) Bioorg Med Chem 17:7884–7893

    Article  CAS  Google Scholar 

  33. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  34. Matthew C, Richard DC III, Van Nicole O (1989) J Comput Chem 10:982–1012

    Article  Google Scholar 

  35. Pirhadi S, Ghasemi JB (2010) Europ J Med Chem 1–7

  36. Wold S, Albano C, Dunn WJ, Edlund U, Esbenson K, Geladi P, Hellberg S, Lindburg W, Sjostrom M (1984) Multivariate data analysis in chemistry. In: Kowalski BR (ed) Chemometrics: MaThematics and Statistics in Chemistry, vol 138, NATO ASI Series- Reidel. Dordrecht, Holland, pp 17–96

    Google Scholar 

  37. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) J Mol Biol 161:269–288

    Article  CAS  Google Scholar 

  38. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  39. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) J Comput Aided Mol Des 11:425–445

    Article  CAS  Google Scholar 

  40. Muegge I, Martin YC (1999) J Med Chem 42:791–804

    Article  CAS  Google Scholar 

  41. van der Spoel D, van Buuren AR, Tieleman DP, Berendsen HJC (1996) J Biomol NMR 8:229–238

    Article  Google Scholar 

  42. Lindahl E, Hess B, van der Spoel D (2001) J Mol Model 7:306–317

    CAS  Google Scholar 

  43. van Aalten DMF, Bywater R, Findlay JBC, Hendlich M, Hooft RWW, Vriend G (1996) J Comput Aided Mol Des 10:255–262

    Article  Google Scholar 

  44. Barreca ML, Ortuso F, Iraci N (2007) Biochem Biophys Res Commun 363:554–560

    Article  CAS  Google Scholar 

  45. Liu R, Li X, Li Y, Jin P, Qin W, Qi J (2009) Biosens Bioelectron 25:629–634

    Article  CAS  Google Scholar 

  46. Niu C, Xu Y, Xu Y, Luo X (2005) J Phys Chem B 109:23730–23738

    Article  CAS  Google Scholar 

  47. Berendsen HJC, Grigerra JR, Straatsma TPJ (1987) Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  48. Parrinello M, Rahman A (1981) J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  49. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  50. Bohm M, Stürzebecher J, Klebe G (1999) J Med Chem 42:458–477

    Article  CAS  Google Scholar 

  51. Bringmann G, Rummey CJ (2003) J Chem Inf Comput Sci 43:304–316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research is supported by high-performance computing platform of Northwest A & F University. The research is financially supported by the Fund of Northwest A & F University. The authors are grateful to Prof. L. Yang for access of Sybyl software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Wang.

Supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary material is available on the publishers website along with the published article. (PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Li, Y., Ma, Z. et al. Structural determinants of benzodiazepinedione/peptide-based p53-HDM2 inhibitors using 3D-QSAR, docking and molecular dynamics. J Mol Model 18, 295–306 (2012). https://doi.org/10.1007/s00894-011-1041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1041-4

Keywords

Navigation