Journal of Molecular Modeling

, Volume 17, Issue 11, pp 2995–3004 | Cite as

Car-Parrinello and path integral molecular dynamics study of the hydrogen bond in the acetic acid dimer in the gas phase

  • Piotr Durlak
  • Sławomir Berski
  • Zdzisław Latajka
Original Paper


In the paper are described studies of the double proton transfer (DPT) processes in the cyclic dimer of acetic acid in the gas phase using Car-Parrinello (CPMD) and path integral molecular dynamics (PIMD). Structures, energies and proton trajectories have been determined. The results show the double proton transfer in 450 K. In the classical dynamics (CPMD) a clear process mechanism can be identified, where asynchronized DPT arises due to coupling between the O-H stretching oscillator and several low energy intermolecular vibrational modes. The DPT mechanism is also asynchronic when quantum tunneling has been allowed in the simulation. It has been found that the calculated values of barrier height for the proton transfer depends very strongly on the used approaches. Barrier received from the free-energy profile at the CPMD level is around 4.5 kcal mol-1 whereas at the PIMD level is reduced to 1 kcal mol-1. The nature of bonding in acetic acid dimer and rearrangement of electron density due to the proton movement has been also studied by the topological analysis of Electron Localization Function and Electron Localizability Indicator function.


Acetic acid dimer (AAD) Double proton transfer (DPT) Electron localisation function (ELF) Electron localizability indicator (ELI) Hydrogen bond Path integrals molecular dynamics (PIMD) Quantum effects 



Becke, Lee, Yang and Parr generalized hybrid functional


Car-Parrinello molecular dynamics


Density functional theory


Double proton transfer


Electron Localisation Function


Electron Localizability Indicator function


Second-order Møller-Plesset perturbation method


Perdew, Burke and Ernzerhof generalized gradient functional


Preconditioned conjugate gradient method


Path integral molecular dynamics


Ten polymer-beads model



The authors would like to gratefully acknowledge the Ministry of Science and Higher Education of Poland for the support of this research; Grant No. NN 204 0958 33. Thanks also are due to the Academic Computer Centre in Gdansk (CI TASK) for the use of the Galera-ACTION Cluster and the Wroclaw Centre for Networking and Supercomputing (WCSS) for the use of the Nova Cluster.


  1. 1.
    Müller A, Ratajczak H, Junge W, Diemann E (1992) Electron and Proton Transfer in Chemistry and Biology. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Limbach HH, Manz J (1998) Hydrogen transfer: experiment and theory. Ber Bunsenges Phys Chem 102:289–586Google Scholar
  3. 3.
    Bertran J, Oliva A, Rodrigues-Sabtiago L, Sodupe M (1998) Single versus double proton-transfer reactions in Watson-Crick base pair radical cations. Theor Study J Am Chem Soc 120:8159–8167CrossRefGoogle Scholar
  4. 4.
    Williams RJP (1988) Proton Circuits in Biological Energy Interconversions. Annu Rev Biophys Biophys Chem 17:71–97CrossRefGoogle Scholar
  5. 5.
    Chang YT, Yamaguchi Y, Miller WH, Schaefer-III HFJ (1987) An analysis of the infrared and Raman spectra of the formic acid dimer (HCOOH)2. J Am Chem Soc 109:7245–7253CrossRefGoogle Scholar
  6. 6.
    Shida N, Barbara PF, Almlöf J (1991) A reaction surface Hamiltonian treatment of the double proton transfer of formic acid dimer. J Chem Phys 94:3633–3643CrossRefGoogle Scholar
  7. 7.
    Kim YJ (1996) Direct dynamics calculation for the double proton transfer in formic acid dimer. J Am Chem Soc 118:1522–1528CrossRefGoogle Scholar
  8. 8.
    Miura S, Tuckerman ME, Klein ML (1998) An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer. J Chem Phys 109:5290–5299CrossRefGoogle Scholar
  9. 9.
    Loerting T, Liedl KR (1998) Toward elimination of discrepancies between theory and experiment: Double proton transfer in dimers of carboxylic acids. J Am Chem Soc 120:12595–12600CrossRefGoogle Scholar
  10. 10.
    Fernando-Ramos A, Smedarchina Z, Rodriges-Otero J (2001) Double proton transfer in the complex of acetic acid with methanol: Theory versus experiment. J Chem Phys 114:1567–1574CrossRefGoogle Scholar
  11. 11.
    Ushiyama H, Takatsuka K (2001) Successive mechanism of double-proton transfer in formic acid dimer: A classical study. J Chem Phys 115:5903–5912CrossRefGoogle Scholar
  12. 12.
    Hayashi S, Umemura J, Kato S, Morokuma K (1984) Ab initio molecular orbital study on the formic acid dimer. J Phys Chem 88:1330–1334CrossRefGoogle Scholar
  13. 13.
    Madeja F, Havenith M (2002) High resolution spectroscopy of carboxylic acid in the gas phase: Observation of proton transfer in (DCOOH)2. J Chem Phys 117:7162–7168CrossRefGoogle Scholar
  14. 14.
    Remmers K, Meerts WL, Ozier I (2000) Proton tunneling in the benzoic acid dimer studied by high resolution ultraviolet spectroscopy. J Chem Phys 112:10890–10894CrossRefGoogle Scholar
  15. 15.
    Antoniou D, Schwartz SD (1998) Proton transfer in benzoic acid crystals: Another look using quantum operator theory. J Chem Phys 109:2287–2293CrossRefGoogle Scholar
  16. 16.
    Car R, Parrinello M (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys Rev Lett 55:2471–2474CrossRefGoogle Scholar
  17. 17.
    Dreyer J (2005) Density functional theory simulations of two-dimensional infrared spectra for hydrogen-bonded acetic acid dimers. Int J Quantum Chem 104:782–793CrossRefGoogle Scholar
  18. 18.
    Heyne K, Huse N, Dreyer J, Nibbering ETJ, Elsaesser T, Mukamel S (2004) Coherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase. J Chem Phys 121:902–913CrossRefGoogle Scholar
  19. 19.
    Heyne K, Huse N, Nibbering ETJ, Elsaesser T (2003) Ultrafast coherent nuclear motions of hydrogen bonded carboxylic acid dimers. Chem Phys Lett 369:591–596CrossRefGoogle Scholar
  20. 20.
    Stenger J, Madsen D, Dreyer J, Nibbering ETJ, Hamm P, Elsaesser T (2001) Coherent response of hydrogen bonds in liquids probed by ultrafast vibrational spectroscopy. J Phys Chem A 105:2929–2932CrossRefGoogle Scholar
  21. 21.
    Tuckerman ME, Marx D, Klein ML, Parrinello M (1996) Efficient and general algorithms for path integral Car-Parrinello molecular Dynamics. J Chem Phys 104:5579–5588CrossRefGoogle Scholar
  22. 22.
    Tuckerman ME, Berne BJ, Martyna GJ, Klein ML (1993) Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals. J Chem Phys 99:2796–2805CrossRefGoogle Scholar
  23. 23.
    Marx D, Parrinello M (1994) Ab initio path-integral molecular dynamics. Z Phys B Condens Matter 95:143–144CrossRefGoogle Scholar
  24. 24.
    Durlak P, Morrison CA, Middlemiss DS, Latajka Z (2007) Car-Parrinello and path integral molecular dynamics study of the hydrogen bond in the chloroacetic acid dimer system. J Chem Phys 127:064304–064311CrossRefGoogle Scholar
  25. 25.
    CPMD,, Copyright IBM Corp 1990–2008, Copyright MPI für Festkörperforschung Stuttgart 1997–2001
  26. 26.
    Martyna J, Klein ML, Tuckerman M (1992) Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Burke S, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  28. 28.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  29. 29.
    Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  30. 30.
    Kohlmeyer A, Forbert H (2004) Scholar
  31. 31.
    Frisch MJ et al. (2004) Gaussian03, Revision C.02. Gaussian Inc, WallingfordGoogle Scholar
  32. 32.
    Møller C, Plesset MS (1934) Note on an Approximation Treatment for Many-Electron Systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  33. 33.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  34. 34.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  35. 35.
    Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first–row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  36. 36.
    Kohout M (2004) Basin version 4.3, DGrid version 4.3Google Scholar
  37. 37.
    Derissen JL (1871) A reinvestigation of the molecular structure of acetic acid monomer and dimer by gas electron diffraction. J Mol Struct 7:67–80CrossRefGoogle Scholar
  38. 38.
    Geva E, Shi Q, Voth GA (2001) Quantum-mechanical reaction rate constants from centroid molecular dynamics simulations. J Chem Phys 115:9209–9222CrossRefGoogle Scholar
  39. 39.
    Craig IR, Manolopoulos DE (2005) Chemical reaction rates from ring polymer molecular Dynamics. J Chem Phys 122:084106–084117CrossRefGoogle Scholar
  40. 40.
    Craig IR, Manolopoulos DE (2005) A refined ring polymer molecular dynamics theory of chemical reaction rates. J Chem Phys 123:034102–034111CrossRefGoogle Scholar
  41. 41.
    Wilson CC, Shankland N, Florence AJ (1996) Direct determination of the temperature dependence of proton transfer in the benzoic acid dimer by single crystal neutron diffraction. Chem Phys Lett 253:103–107CrossRefGoogle Scholar
  42. 42.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  43. 43.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686CrossRefGoogle Scholar
  44. 44.
    Kohout M (2004) A measure of electron localizability. Int J Quantum Chem 97:651–658CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Piotr Durlak
    • 1
  • Sławomir Berski
    • 1
  • Zdzisław Latajka
    • 1
  1. 1.Faculty of ChemistryUniversity of WrocławWrocławPoland

Personalised recommendations