Skip to main content
Log in

A molecular dynamics study of a miRNA:mRNA interaction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper we present a methodology to evaluate the binding free energy of a miRNA:mRNA complex through molecular dynamics (MD)–thermodynamic integration (TI) simulations. We applied our method to the Caenorhabditis elegans let-7 miRNA:lin-41 mRNA complex—a validated miRNA:mRNA interaction—in order to estimate the energetic stability of the structure. To make the miRNA:mRNA simulation possible and realistic, the methodology introduces specific solutions to overcome some of the general challenges of nucleic acid simulations and binding free energy computations that have been discussed widely in many previous research reports. The main features of the proposed methodology are: (1) positioning of the restraints imposed on the simulations in order to guarantee complex stability; (2) optimal sampling of the phase space to achieve satisfactory accuracy in the binding energy value; (3) determination of a suitable trade-off between computational costs and accuracy of binding free energy computation by the assessment of the scalability characteristics of the parallel simulations required for the TI. The experiments carried out demonstrate that MD simulations are a viable strategy for the study of miRNA binding characteristics, opening the way to the development of new computational target prediction methods based on three-dimensional structure information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Triboulet R, Gregory RI (2010) Pumilio turns on microRNA function. Nat Cell Biology 12(10):928–929

    Article  CAS  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  Google Scholar 

  3. Min H, Yoon S (2010) Got target?: computational methods for microRNA target prediction and their extension. Exp Mol Med 42(4):233–244

    Article  CAS  Google Scholar 

  4. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2010) Control of translation and mRNA degradation by miRNAs and siRNAs. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  5. Cheatham TE III (2004) Simulation and modelling of nucleic acid structure, dynamics and interactions. Curr Opin Struct Biol 14(3):360–367

    Article  CAS  Google Scholar 

  6. Yuan Y-R, Pei Y, Chen H-Y, Tuschi T, Patel DJ (2006) A potential protein–RNA recognition event along the RISC-loading pathway from the structure of A. aeolicus Argonaute with externally bound siRNA. Structure 14(10):1557–1565

    Article  CAS  Google Scholar 

  7. Vella MC, Reinert K, Slack FJ (2004) Architecture of a validate microRNA::target interaction. Chem Biol 11:1619–1623

    Article  CAS  Google Scholar 

  8. Norberg J, Nilsson L (2002) Molecular dynamics applied to nucleic acids. Acc Chem Res 35:465–472

    Article  CAS  Google Scholar 

  9. Pan Y, Mackerell AD Jr (2003) Altered structural fluctuations in duplex RNA versus DNA: a conformational switch involving base pair opening. Nucleic Acids Res 31(24):7131–7140

    Article  CAS  Google Scholar 

  10. Knight JL, Brooks CL III (2009) λ-dynamics free energy simulation methods. J Comput Chem 30(11):1692–1700

    Article  CAS  Google Scholar 

  11. Lawrenz M, Baron R, McCammon JA (2009) Independent-trajectories thermodynamic-integration free-energy changes for biomolecular system: determinants of N5HN1 avian influenza virus neuraminidase inhibition by Peramivir. J Chem Theory Comput 5(4):1106–1116

    Article  CAS  Google Scholar 

  12. MacKerell AD Jr, Nilsson L (2008) Molecular dynamics simulations of nucleic acid-protein complexes. Curr Opin Struct Biol 18(2):194–199

    Article  CAS  Google Scholar 

  13. Cevec M, Thibaudeau C, Plavec J (2008) Solution structure of a let-7 miRNA:lin41 mRNA complex from C. elegans. Nucleic Acids Res 36:2330–2337

    Article  CAS  Google Scholar 

  14. Schwarz DS, Zamore PD (2002) Why do miRNAs live in the miRNP? Genes Dev 16:1025–1031

    Article  CAS  Google Scholar 

  15. Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19(5):517–529

    Article  CAS  Google Scholar 

  16. Tanaka Hall TM (2005) Structure and function of Argonaute proteins. Structure 13:1403–1408

    Article  Google Scholar 

  17. rWang Y, Juranek A, Li H, Sheng G, Tuschl T, Patel DJ (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456:921–926

    Article  CAS  Google Scholar 

  18. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  CAS  Google Scholar 

  19. DePaul AJ, Thompson EJ, Patel SS, Haldeman K, Sorin EJ (2010) Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics. Nucleic Acids Res 38:4856–4867

    Article  CAS  Google Scholar 

  20. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  21. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  22. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  23. Chipot C (2005) Free energy calculations in biological systems. How useful are they in practice? In: Leimkuhler B, Chipot C, Elber R, Laaksonen A, Mark AE, Schlick T, Schütte C, Skeel R (eds) New algorithms for macromolecular simulation, vol 49. Springer, Berlin, pp 183–209

  24. Wang Y, Li Y, Ma Z, Yang W, Chunzhi A (2010) Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamic analysis. PLoS Comput Biol 6(7):e1000866. doi:10.1371/journal.pcbi.1000866

    Article  Google Scholar 

  25. Wang Y, Juranek S, Li H, Sheng G, Wardle GS, Tuschl T, Patel DJ (2009) Nucleation, propagation and cleavage of target RNA in Ago silencing complexes. Nature 461:754–756

    Article  CAS  Google Scholar 

  26. Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single parameter harmonic potential. Fold Des 2(3):173–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Paciello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paciello, G., Acquaviva, A., Ficarra, E. et al. A molecular dynamics study of a miRNA:mRNA interaction. J Mol Model 17, 2895–2906 (2011). https://doi.org/10.1007/s00894-011-0991-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0991-x

Keywords

Navigation