Skip to main content
Log in

Application of a SCC-DFTB QM/MM approach to the investigation of the catalytic mechanism of fatty acid amide hydrolase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Self-consistent charge density functional tight binding (SCC-DFTB) is a promising method for hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of enzyme-catalyzed reactions. The acylation reaction of fatty acid amide hydrolase (FAAH), a promising drug target, was investigated by applying a SCC-DFTB/CHARMM27 scheme. Calculated potential energy barriers resulted in reasonable agreement with experiments for oleamide (OA) and oleoylmethyl ester (OME) substrates, outperforming previous calculations performed at the PM3/CHARMM22 level. Furthermore, the experimental preference of FAAH in hydrolyzing OA faster than OME was adequately reproduced by calculations. All these findings indicate that the SCC-DFTB/CHARMM27 approach can be successfully applied to mechanistic investigations of FAAH-catalyzed reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lonsdale R, Ranaghan KE, Mulholland AJ (2010) Computational enzymology. Chem Commun 46:2354–2372

    Article  CAS  Google Scholar 

  2. Cavalli A, Carloni P, Recanatini M (2006) Target-related applications of first principles quantum chemical methods in drug design. Chem Rev 106:3497–3519

    Article  CAS  Google Scholar 

  3. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  4. Warshel A (2003) Computer simulations of enzyme catalysis: methods, progress, and insights. Annu Rev Biophys Biomol Struct 32:425–443

    Article  CAS  Google Scholar 

  5. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48:1198–1229

    Article  CAS  Google Scholar 

  6. Friesner RA, Guallar V (2005) Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu Rev Phys Chem 56:389–427

    Article  CAS  Google Scholar 

  7. Claeyssens F, Harvey JN, Manby FR, Mata RA, Mulholland AJ, Ranaghan KE, Schütz M, Thiel S, Thiel W, Werner HJ (2006) High accuracy computation of reaction barriers in enzymes. Angew Chem Int Ed Engl 45:6856–6859

    Article  CAS  Google Scholar 

  8. Mulholland AJ (2007) Chemical accuracy in QM/MM calculations on enzyme-catalysed reactions. Chem Cent J 1:1–19

    Article  Google Scholar 

  9. Lodola A, Sirirak J, Fey N, Rivara S, Mor M, Mulholland AJ (2010) Structural fluctuations in enzyme-catalyzed reactions: determinants of reactivity in fatty acid amide hydrolase from multivariate statistical analysis of quantum mechanics/molecular mechanics paths. J Chem Theor Comput 6:2948–2960

    Google Scholar 

  10. Ridder L, Mulholland AJ (2003) Modeling biotransformation reactions by combined quantum mechanical/molecular mechanical approaches: from structure to activity. Curr Top Med Chem 3:1241–1256

    Article  CAS  Google Scholar 

  11. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  12. Otte N, Scholten M, Thiel W (2007) Looking at self-consistent-charge density functional tight binding from a semiempirical perspective. J Phys Chem A 111:5751–5755

    Article  CAS  Google Scholar 

  13. Elstner M (2006) The SCC-DFTB method and its application to biological systems. Theor Chem Acc 116:316–325

    Article  CAS  Google Scholar 

  14. Xu D, Guo H, Cui Q (2007) Antibiotic binding to dizinc β-lactamase L1 from Stenotrophomonas maltophilia: SCC-DFTB/CHARMM and DFT studies. J Phys Chem A 111:5630–5636

    Google Scholar 

  15. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J Phys Chem B 105:569–585

    Google Scholar 

  16. Seabra G, Walker RC, Elstner M, Case DA, Roitberg AE (2007) Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the Amber molecular dynamics package. J Phys Chem A 26:5655–5664

    Google Scholar 

  17. Riccardi D, Schaefer P, Yang Y, Yu H, Ghosh N, Prat-Resina X, König P, Li G, Xu D, Guo H, Elstner M, Cui Q (2006) Development of effective quantum mechanical/molecular mechanical (QM/MM) methods for complex biological processes. J Phys Chem B 110:6458–6469

    Article  CAS  Google Scholar 

  18. Lodola A, Mor M, Hermann JC, Tarzia G, Piomelli D, Mulholland AJ (2005) QM/MM modelling of oleamide hydrolysis in fatty acid amide hydrolase (FAAH) reveals a new mechanism of nucleophile activation. Chem Commun 35:4399–4401

    Article  Google Scholar 

  19. Lodola A, Mor M, Rivara S, Christov C, Tarzia G, Piomelli D, Mulholland AJ (2008) Identification of productive inhibitor binding orientation in fatty acid amide hydrolase (FAAH) by QM/MM mechanistic modelling. Chem Commun 2:214–216

    Article  Google Scholar 

  20. Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    Article  CAS  Google Scholar 

  21. Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, Dasse O, Monaghan EP, Parrott JA, Putman D (2006) Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev 12:21–38

    Article  CAS  Google Scholar 

  22. Lodola A, Mor M, Zurek J, Tarzia G, Piomelli D, Harvey JN, Mulholland AJ (2007) Conformational effects in enzyme catalysis: reaction via a high energy conformation in fatty acid amide hydrolase. Biophys J 92:L20–L22

    Article  CAS  Google Scholar 

  23. Tubert-Brohman I, Acevedo O, Jorgensen WL (2006) Elucidation of hydrolysis mechanisms for fatty acid amide hydrolase and its Lys142Ala variant via QM/MM simulations. J Am Chem Soc 128:16904–16913

    Article  CAS  Google Scholar 

  24. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  25. McKinney MK, Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432

    Article  CAS  Google Scholar 

  26. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Google Scholar 

  27. Yin D, MacKerell AD Jr (1998) Combined ab initio/empirical approach for the optimization of Lennard–Jones parameters. J Comput Chem 19:334–338

    Google Scholar 

  28. Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105:1902–1921

    Article  CAS  Google Scholar 

  29. Shaw KE, Woods CJ, Mulholland AJ (2010) Compatibility of quantum chemical methods and empirical (MM) water models in quantum mechanics/molecular mechanics liquid water simulations. J Phys Chem Lett 1:219–223

    Article  CAS  Google Scholar 

  30. Lodola A, Mor M, Sirirak J, Mulholland AJ (2009) Insights into the mechanism and inhibition of fatty acid amide hydrolase from quantum mechanics/molecular mechanics (QM/MM) modelling. Biochem Soc Trans 37(Pt 2):363–367

    Article  CAS  Google Scholar 

  31. Bracey MH, Hanson MA, Masuda KR, Stevens RC, Cravatt BF (2002) Structural adaptation in a membrane enzyme that terminates endocannabinoid signaling. Science 298:1793–1796

    Article  CAS  Google Scholar 

  32. Brooks CL, Karplus M (1989) Solvent effects on protein motion and protein effects on solvent motion. Dynamics of the active site region of lysozyme. J Mol Biol 208:159–181

    Article  CAS  Google Scholar 

  33. Mulholland AJ, Richards WG (1997) Acetyl-CoA enolization in citrate synthase: a quantum mechanical/molecular mechanical (QM/MM) study. Proteins 27:9–25

    Article  CAS  Google Scholar 

  34. Eurenius KP, Chatfield DC, Brooks BR, Hodoscek M (1996) Enzyme mechanisms with hybrid quantum and molecular mechanical potentials. I. Theoretical considerations. Int J Quantum Chem 60:1189–1200

    Article  CAS  Google Scholar 

  35. Hermann JC, Hensen C, Ridder L, Mulholland AJ, Höltje HD (2005) Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. J Am Chem Soc 127:4454–4465

    Article  CAS  Google Scholar 

  36. Hermann JC, Ridder L, Höltje HD, Mulholland AJ (2006) Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A beta-lactamase. Org Biomol Chem 4:206–210

    Article  CAS  Google Scholar 

  37. Labar G, Michaux C (2007) Fatty acid amide hydrolase: from characterization to therapeutics. Chem Biodivers 4:1882–1902

    Article  CAS  Google Scholar 

  38. McKinney MK, Cravatt BF (2003) Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase. J Biol Chem 278:37393–37399

    Article  CAS  Google Scholar 

  39. Ahn K, McKinney MK, Cravatt BF (2008) Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev 108:1687–1707

    Article  CAS  Google Scholar 

  40. van der Kamp MW, Mulholland AJ (2008) Computational enzymology: insight into biological catalysts from modelling. Nat Prod Rep 6:1001–1014

    Article  Google Scholar 

  41. Mileni M, Garfunkle J, Ezzili C, Kimball FS, Cravatt BF, Stevens RC, Boger DL (2010) X-ray crystallographic analysis of α-ketoheterocycle inhibitors bound to a humanized variant of fatty acid amide hydrolase. J Med Chem 53:230–240

    Google Scholar 

  42. Klähn M, Braun-Sand S, Rosta E, Warshel A (2005) On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions. J Phys Chem B 109:15645–15650

    Article  Google Scholar 

  43. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2005) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195

    Article  Google Scholar 

  44. Bowman AL, Ridder L, Rietjens IM, Vervoort J, Mulholland AJ (2007) Molecular determinants of xenobiotic metabolism: QM/MM simulation of the conversion of 1-chloro-2,4-dinitrobenzene catalyzed by M1-1 glutathione S-transferase. Biochemistry 46:6353–6363

    Google Scholar 

Download references

Acknowledgments

AJM and EC thank the Engineering and Physical Science Research Council for support. AJM is an Engineering and Physical Science Research Council Leadership Fellow. JS thanks the Royal Thai Government for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adrian J. Mulholland or Alessio Lodola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capoferri, L., Mor, M., Sirirak, J. et al. Application of a SCC-DFTB QM/MM approach to the investigation of the catalytic mechanism of fatty acid amide hydrolase. J Mol Model 17, 2375–2383 (2011). https://doi.org/10.1007/s00894-011-0981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0981-z

Keywords

Navigation