Skip to main content
Log in

Studies on filarial GST as a target for antifilarial drug development—in silico and in vitro inhibition of filarial GST by substituted 1,4-naphthoquinones

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Eleven 1,4-naphthoquinone analogues with different amino substitutions at position 3 of the quinone ring earlier reported for macrofilaricidal activity were selected and screened against purified cytosolic GST isolated from the bovine filarial worm Setaria digitata and IC50 values were determined. Of the 11 compounds tested, 8 showed good inhibition against S. digitata GST. The IC50 values of the most effective macrofilaricidal compounds—11 [2-(4-methylpiperazin-1-yl)naphthalene-1,4-dione] and 9 {2-[(1,3-dimethylbutyl)amino]naphthalene -1,4-dione}—were 0.872 and 0.994 mM, respectively. Compounds 9 and 11 were further studied for type of enzyme inhibition and found to exhibit competitive and uncompetitive inhibition kinetics, respectively, with respect to substrate GSH. All 11 compounds were in agreement with Lipinski’s rule of five and passed through the FAFDrugs ADME/tox filter. Molecular docking was carried out using the modeled 3D structure of wbGST PDB ID:1SFM as receptor and substituted naphthoquinones as ligands using AutoDock 4.0. The binding energy of nine compounds varied from −9.15 to −6.58 Kcal mol−1, whereas compounds 8 and 10 did not show any binding to the receptor. Among the compounds studied, compound 7 {2-[3-(diethylamino) propyl]aminonaphthalene-1,4-dione} showed maximum affinity towards wbGST as it exhibited the lowest binding energy, followed by compounds 11 and 9. However compound 7 was not macrofilaricidal while 11 and 9 exhibited macrofilaricidal activity. The results of in silico and in vitro studies with the synthesized 1,4 -naphthoquinone analogues on filarial GST and in vitro macrofilaricidal activity against adult bovine filarial worm S. digitata open up a promising biochemical target for antifilarial drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO (2007) Wkly Epidemiol Rec 82:361–380

    Google Scholar 

  2. Michael E, Bundy DAP (1997) Parasitol Today 13:472–476

    Article  CAS  Google Scholar 

  3. Otteson EA (1994) Curr Opin Infect Dis 7:550–558

    Article  Google Scholar 

  4. Tiwari VK, Tewari N, Katiyar D, Tripathi RP, Arora K, Gupta S, Ahmad R, Srivastava AK, Khan MA, Murthy PK, Walter RD (2003) Bioorg Med Chem 11:1789–1800

    Article  CAS  Google Scholar 

  5. Precious WY, Barret J (1989) Biochim Biophys Acta 992:215–222

    CAS  Google Scholar 

  6. Callahan HL, Crouch RK, James ER (1988) Parasitol Today 4:218–225

    Article  CAS  Google Scholar 

  7. Brophy PM, Pritchard DI (1992) Parasitol Today 8:419–422

    Article  CAS  Google Scholar 

  8. Brophy PM, Barret J (1990) Parasitology 100:345–349

    Article  CAS  Google Scholar 

  9. Liebau E, Wildenburg G, Brophy PM, Walter RD, Henkle-Dührsen K (1996) Mol Biochem Parasitol 80:27–39

    Article  CAS  Google Scholar 

  10. Brophy PM, Pritchard DI (1994) Exp Parasitol 79:89–96

    Article  CAS  Google Scholar 

  11. Sharp PJ, Smith DRJ, Bach W, Wagland BM, Cobon GS (1991) Int J Parasitol 21:839–846

    Article  CAS  Google Scholar 

  12. Van Bladeren PJ, van Ommen B (1991) Pharmacol Ther 51:35–66

    Article  Google Scholar 

  13. Nathan ST, Nisha M, Kalyanasundaram M, Balaraman K (2005) J Mol Model 1:194–199

    Article  Google Scholar 

  14. Kaushal NA, Kaushal DC, Ghatac S (1987) Immunol Invest 16:139–149

    Article  CAS  Google Scholar 

  15. Lakshmy S, Nisha M, Kalyanasundaram M (2009) Parasitol Res 105:1179–1182

    Article  Google Scholar 

  16. Mukhopadhyay S, Dash AP, Ravindran B (1996) Parasitology 113:323–330

    Article  Google Scholar 

  17. Nisha M, Twinkle K, Lakshmy S, Kalyanasundaram M (2010) Drug Dev Res 71:188–196

    Google Scholar 

  18. Habig WH, Pabst MJ, Jakoby WB (1974) J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  19. Miteva MA, Violas S, Montes M, Gomez D, Tuffery P, Villoutreix BO (2006) Nucleic Acids Res 34:W738–W744

    Article  CAS  Google Scholar 

  20. http://bioserv.rpbs.jussieu.fr/Help/FAFDrugs.html

  21. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  22. AutoDock Tools [http://autodock.scripps.edu/resources/adt/index_html

  23. Johansson A, Ridderstrom M, Mannervik B (2000) Mol Pharmacol 57:619–624

    CAS  Google Scholar 

  24. Hiller N, Fritz-Wolf K, Deponte M, Wende W, Zimmermann H, Becker K (2006) Protein Sci 15:281–289

    Article  CAS  Google Scholar 

  25. James ER (1994) Parasitol Today 10:481–482

    Article  CAS  Google Scholar 

  26. Selkirk ME, Smith VP, Thomas GR, Gounaris K (1998) Int J Parasitol 28:1315–1332

    Article  CAS  Google Scholar 

  27. Nisha M, Kalyanasundaram M (2007) Expert Opin Ther Pat 17:767–789

    Article  Google Scholar 

  28. Waterbeemd H, Gifford H (2003) Nat Rev Drug Discov 2:192–205

    Article  Google Scholar 

  29. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Adv Drug Deliv Rev 46:3–26

    Article  CAS  Google Scholar 

  30. Daniel FV, Stephen RJ, Hung-Yuan C, Brian RS, Keith WW, Kenneth DK (2002) J Med Chem 45:2615–2623

    Article  Google Scholar 

  31. Guyton AC (1991) Textbook of medical physiology, 8th edn. Saunders, Philadelphia, pp 683–684

    Google Scholar 

  32. Michele AM, DeWight RW, John AT (1995) J Mol Biol 246:21–27

    Article  Google Scholar 

  33. Harwaldt P, Rahlfs S, Becker K (2002) Biol Chem 383:821–830

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.M. expresses sincere gratitude to the Department of Science and Technology (DST), Government of India for funding [Grant SR/SO/HS-83/2005] to conduct this study. The authors are grateful to Dr. P. Jambulingam, Director, Vector Control Research Center, Pondicherry, for his encouragement during the study. The technical assistance of Mrs. Anila Kumari and Mr. Srinivasan is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Mathew.

Supplementary material available

Below is the link to the electronic supplementary material.

ESM 1

Docking binding energy (mean lowest) values and the number of members of each cluster (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, N., Srinivasan, L., Karunan, T. et al. Studies on filarial GST as a target for antifilarial drug development—in silico and in vitro inhibition of filarial GST by substituted 1,4-naphthoquinones. J Mol Model 17, 2651–2657 (2011). https://doi.org/10.1007/s00894-010-0952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0952-9

Keywords

Navigation