Advertisement

Journal of Molecular Modeling

, Volume 17, Issue 9, pp 2237–2248 | Cite as

On possible existence of pseudobinary mixed valence fluorides of Ag(I) / Ag(II): a DFT study

  • Wojciech GrochalaEmail author
Original Paper

Abstract

The DFT calculations performed within local density approximation disclose conceivable existence of two novel mixed–valence Ag(I)/Ag(II) fluorides, Ag2F3, i.e., Ag(I)Ag(II)F3 and Ag3F4, i.e., Ag(I)2Ag(II)F4. Ag2F3 is predicted to crystallize in three equally stable NaCuF3–, KAgF3–, or CuTeO3–type structures, while Ag3F4 should be isostructural to Na2CuF4. The calculated vibration-corrected energies of formation at 0 K of Ag2F3 and Ag3F4 (in their most stable polytypes) from binary fluorides are negative but small (respectively, –0.09 eV and –0.21 eV per formula unit). Formation of Ag3F5 (which, in fact, is a mixed valence Ag(I)/Ag(III) salt) from binary fluorides is much less likely, since the energy of formation is quite positive of about a quarter eV. The predicted volumes per formula unit for all forms of Ag2F3 are larger and that for K2CuF4–type Ag3F4 is smaller than the sum of volumes of the corresponding binary fluorides; Ag2F3 should not form at high pressure conditions due to a decomposition to the binary constituents. Ag2F3 and Ag3F4 should exhibit genuine mixed– and not intermediate–valence with quite different coordination spheres of Ag(I) and Ag(II). Nevertheless, they should not be electric insulators. Ag2F3 is predicted to be a metallic ferrimagnet with a magnetic superexchange coupling constant, J, of –2 meV while Ag3F4 should be a metallic ferromagnet with J of +52 meV. Since Ag2F3 and Ag3F4 are at the verge of thermodynamic stability, a handful of exothermic reactions have been proposed which could yield these as yet unknown compounds.

Figure

Novel mixed valence Ag(I)/Ag(II) fluorides, such as Ag(I)2Ag(II)F4 shown here, are predicted from DFT calculations

Keywords

Band theory Density functional theory Fluorine Mixed valence Oxidizers Phonons Silver 

Notes

Acknowledgments

The project ‘Quest for superconductivity in crystal-engineered higher fluorides of silver’ is operated within the Foundation for Polish Science ‘TEAM’ Program co-financed by the EU European Regional Development Fund. Calculations have been performed at Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) supercomputers. WG is grateful to ICM and Faculty of Chemistry, University of Warsaw, for financial sustenance.

References

  1. 1.
    Fe3O4 mentioned here is actually a more complex case, with Fe(III) cations at the A site of the spinel and both Fe(II) and Fe(III) cations at the B siteGoogle Scholar
  2. 2.
    Robin MB, Day P (1967) Adv inorg chem radiochem 10:247–422CrossRefGoogle Scholar
  3. 3.
    Marcus RA (1993) Angew Chem Int Ed Engl 32:1111-1121Google Scholar
  4. 4.
    Barbara PF, Meyer TJ, Ratner MA (1996) J Phys Chem 100: 13148-13168Google Scholar
  5. 5.
    Grochala W, Hoffman R (2000) J Phys Chem A 104:9740-9749 and references thereinGoogle Scholar
  6. 6.
    Bednorz JG, Müller KA (1986) Z Phys B Con Mat 64:189–193CrossRefGoogle Scholar
  7. 7.
    Williams A (1989) J Phys Condens Mat 1:2569–2574CrossRefGoogle Scholar
  8. 8.
    Yoshida H, Muraoka Y, Sörgel T, Jansen M, Hiroi Z (2006) Phys Rev B 73:020408(R)-1 to -4Google Scholar
  9. 9.
    Schreyer M, Jansen M (2002) Angew Chem Int Ed Engl 41:643–646CrossRefGoogle Scholar
  10. 10.
    Wang QM, Lee HK, Mak TCW (2002) New J Chem 26:513–515CrossRefGoogle Scholar
  11. 11.
    Leung PC, Aubke F (1978) Inorg Chem 17:1765–1772CrossRefGoogle Scholar
  12. 12.
    Michałowski T et al. (2010) 16th European Symposium on Fluorine Chemistry, Ljubljana SloveniaGoogle Scholar
  13. 13.
    Mazej Z (2010) Pacifichem – The International Chemical Congress of Pacific Basin Societies, Honolulu USAGoogle Scholar
  14. 14.
    Shen CP, Žemva B, Lucier GM, Graudejus O, Allman JA, Bartlett N (1999) Inorg Chem 38:4570–4577CrossRefGoogle Scholar
  15. 15.
    McMillan JA (1960) J Inorg Nucl Chem 13:28–31CrossRefGoogle Scholar
  16. 16.
    Robin MB, Andres K, Geballe TH, Kuebler NA, McWhan DB (1966) Phys Rev Lett 17:917–919CrossRefGoogle Scholar
  17. 17.
    Standke B, Jansen M (2003) Angew Chem Int Ed Engl 25:77–78CrossRefGoogle Scholar
  18. 18.
    Žemva B et al. (1991) J Am Chem Soc 113:4192–4198CrossRefGoogle Scholar
  19. 19.
    Kraus M, Müller M, Fischer R, Schmidt R, Koller D, Müller BG (2000) J Fluorine Chem 101:165–171CrossRefGoogle Scholar
  20. 20.
    Grochala W, Hoffmann R (2001) Angew Chem Int Ed Engl 40:2743–2781CrossRefGoogle Scholar
  21. 21.
    Grochala W, Egdell RG, Edwards PP, Mazej Z, Žemva B (2003) Chem Phys 4:997–1001Google Scholar
  22. 22.
    Lucier GM, Münzenberg J, Casteel WJ, Bartlett N (1995) Inorg Chem 34:2692–2698CrossRefGoogle Scholar
  23. 23.
    Grochala W, Edwards PP (2003) Phys Status Solidi B 240:R11–R14CrossRefGoogle Scholar
  24. 24.
    Grochala W, Porch A, Edwards PP (2004) Solid State Commun 130:137–142CrossRefGoogle Scholar
  25. 25.
    Grochala W (2005) J Mol Model 11:323–329CrossRefGoogle Scholar
  26. 26.
    Grochala W (2009) J Mater Chem 19:6949–6968CrossRefGoogle Scholar
  27. 27.
    Tokura Y, Tagaki H, Uchida S (1989) Nature 337:345–347CrossRefGoogle Scholar
  28. 28.
    Grochala W, Feng J, Hoffmann R, Ashcroft NW (2006) Angew Chem Int Ed Engl 46:3620–3642CrossRefGoogle Scholar
  29. 29.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  30. 30.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  31. 31.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  32. 32.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  33. 33.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211CrossRefGoogle Scholar
  34. 34.
    Malinowski PJ, Derzsi M, Gaweł B, Łasocha W, Jagličić Z, Mazej Z, Grochala W (2010) Angew Chem Int Edit 49:1683–1686Google Scholar
  35. 35.
    Derzsi M, Dymkowski K, Grochala W (2010) Inorg Chem 49:2735–2742CrossRefGoogle Scholar
  36. 36.
    Romiszewski J, Stolarczyk L, Grochala W (2007) J Phys Condens Matter 19:116206-1 to -13Google Scholar
  37. 37.
    Mazej Z et al. (2009) Cryst Eng Comm 11:1702–1710Google Scholar
  38. 38.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509CrossRefGoogle Scholar
  39. 39.
    McLain SE et al. (2006) Nat Mater 5:561–566CrossRefGoogle Scholar
  40. 40.
    Kurzydłowski D et al. (2010) 16th European Symposium on Fluorine Chemistry, Ljubljana SloveniaGoogle Scholar
  41. 41.
    Hidaka M, Inoue K, Yamada I, Walker PJ (1983) Physica B + C 121:343–350Google Scholar
  42. 42.
    Kurzydłowski D et al. (2010) Eur J Inorg Chem 19:2919–2925CrossRefGoogle Scholar
  43. 43.
    Babel D (1965) Z Anorg Allg Chem 336:200–206CrossRefGoogle Scholar
  44. 44.
    Buttner RH, Maslen EN, Spadaccini N (1990) Acta Crystallogr B 46:131–138CrossRefGoogle Scholar
  45. 45.
    Hidaka M, Eguchi T, Yamada I (1998) J Phys Soc Jpn 67:2488–2494CrossRefGoogle Scholar
  46. 46.
    Lindqvist O (1971) Acta Chem Scand 25:740–787CrossRefGoogle Scholar
  47. 47.
    Kaiser V, Otto M, Binder F, Babel D (1990) Z Anorg Allg Chem 585:93–104CrossRefGoogle Scholar
  48. 48.
    Tong J, Lee C, Whangbo MH, Kremer RK, Simon A Köhler J (2010) Z Kristallogr 12:680–684Google Scholar
  49. 49.
    Ghedira M, Anne M, Chenavas J, Marezio M, Sayetat F (1986) J Phys C 19:6489–6503CrossRefGoogle Scholar
  50. 50.
    Müllerbuschbaum H, Wollschlager W (1975) Z Anorg Allg Chem 414:76–80CrossRefGoogle Scholar
  51. 51.
    Bachmann B, Müller BG (1991) Z Anorg Allg Chem 597:9–18CrossRefGoogle Scholar
  52. 52.
    Müller BG (1982) Z Anorg Allg Chem 491:245–252CrossRefGoogle Scholar
  53. 53.
    Kaiser V, Babel D (1990) Acta Crystallogr A 46:367–368Google Scholar
  54. 54.
    Berastegui P, Hull S, Eriksson SG (2010) J Solid State Chem 183:373–378CrossRefGoogle Scholar
  55. 55.
    Hoppe R, Homann R (1966) Naturwiss 53:501–501CrossRefGoogle Scholar
  56. 56.
    Kurzydłowski D, Grochala W (2008) Chem Commun 1073-1075Google Scholar
  57. 57.
    Kurzydłowski D, Grochala W (2008) Z Anorg Allg Chem 634:1082–1086CrossRefGoogle Scholar
  58. 58.
    Hoppe R (1957) Z Anorg Allg Chem 292:28–33CrossRefGoogle Scholar
  59. 59.
    See Supplementary Information for Ref. [36] for DFT calculationsGoogle Scholar
  60. 60.
    King G, Woodward PM (2010) J Mater Chem 20:5785–5796CrossRefGoogle Scholar
  61. 61.
    Fischer P, Schwarzenbach D, Rietveld HM (1971) J Phys Chem Solids 32:543–550CrossRefGoogle Scholar
  62. 62.
    Jesih A et al. (1990) Z Anorg Allg Chem 588:77–83CrossRefGoogle Scholar
  63. 63.
    The P21/c cell is pseudo-orthorhombic (β = 90.01o) and it may be symmetrized to Cmmm; this comes with energy bill of +0.02 eV per FUGoogle Scholar
  64. 64.
    Grochala W (2006) Phys Statud Solidi B 243:R81–R83CrossRefGoogle Scholar
  65. 65.
    Mitrofanov VY, Nikiforov AE, Shashkin SY (1997) Solid State Commun 104:499–504CrossRefGoogle Scholar
  66. 66.
    Feng J, Hennig RG, Ashcroft NW, Hoffmann R (2008) Nature 451:445–448CrossRefGoogle Scholar
  67. 67.
    Bartlett N, Yeh S, Kourtakis K, Mallouk TE (1984) J Fluorine Chem 26:97–116CrossRefGoogle Scholar
  68. 68.
    Shen CS, Hagiwara R, Mallouk TE, Bartlett N (1994) In: Inorganic Fluorine Chemistry Toward the 21st Century. American Chemical Society, Washington DC, p 26CrossRefGoogle Scholar
  69. 69.
    Jenkins HDB, Glasser L (2003) Inorg Chem 42:8702–8708CrossRefGoogle Scholar
  70. 70.
    Derzsi M, Leszczyński P, Grochala W (2010) unpublished data. Grochala W et al. (2010) 16th European Symposium on Fluorine Chemistry, Ljubljana SloveniaGoogle Scholar
  71. 71.
    Jaroń T, Grochala W (2008) Phys Status Solidi R 2:71–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.ICMUniversity of WarsawWarsawPoland
  2. 2.Faculty of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations