Journal of Molecular Modeling

, Volume 17, Issue 9, pp 2159–2168 | Cite as

Proton transfer dynamics in the propionic acid dimer from path integral molecular dynamics calculations

  • Piotr DurlakEmail author
  • Zdzisław Latajka
Original Paper


The double proton transfer process in the cyclic dimer of propionic acid in the gas phase was studied using a path integral molecular dynamics method. Structures, energies and proton trajectories were determined. Very large amplitude motions of the skeleton of a propionic acid molecule were observed during the simulations, and almost free rotation of the C2H5 group around the Cα-C bond. A double-well symmetric potential with a very small energy barrier was determined from the free energy profile for the proton motions. Infrared spectra for different isotopomers were calculated, and comparative vibrational analysis was performed. The vibrational results from CPMD appear to be in qualitative agreement with the experimental ones.


Hydrogen bond Propionic acid dimer (PAD) Path integral molecular dynamics (PIMD) Double proton transfer (DPT) Quantum effects IR spectra 



Car–Parrinello molecular dynamics


Density functional theory


Double proton transfer


Infrared spectrum


Isotopic ratio


Second-order Møller–Plesset perturbation method


Ultraviolet spectroscopy


Perdew–Burke–Ernzerhof generalized gradient functional


Path integral molecular dynamics


Eight polymer-bead model


Sixteen polymer-bead model


Single proton transfer



The authors would like to gratefully acknowledge the Ministry of Science and Higher Education of Poland for supporting this research through grant no. NN 204 0958 33. Thanks also are due to the Academic Computer Centre in Gdansk (CI TASK) for allowing us to use the Galera-ACTION cluster, and the Wroclaw Centre for Networking and Supercomputing (WCSS) for permitting us to use the Nova Cluster. Dr. Matthew Farrow is gratefully acknowledged for editing and proofreading this manuscript.


  1. 1.
    Pérez A, Tuckerman EA, Hjalmarson HP, von Lilienfeld OA (2010) Enol tautomers of Watson–Crick base pair models are metastable because of nuclear quantum effects. J Am Chem Soc 132:11510–11515Google Scholar
  2. 2.
    Maréchal Y (2007) The hydrogen bond and the water molecule. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Shida N, Barbara PF, Almlöf J (1991) A reaction surface Hamiltonian treatment of the double proton transfer of formic acid dimer. J Chem Phys 94:3633–3643CrossRefGoogle Scholar
  4. 4.
    Miura S, Tuckerman ME, Klein ML (1998) An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer. J Chem Phys 109:5290–5299Google Scholar
  5. 5.
    Loerting T, Liedl KR (1998) Toward elimination of discrepancies between theory and experiment: double proton transfer in dimers of carboxylic acids. J Am Chem Soc 120:12595–12600Google Scholar
  6. 6.
    Ushiyama H, Takatsuka K (2001) Successive mechanism of double-proton transfer in formic acid dimer: a classical study. J Chem Phys 115:5903–5912Google Scholar
  7. 7.
    Madeja F, Havenith M (2002) High resolution spectroscopy of carboxylic acid in the gas phase: observation of proton transfer in (DCOOH)2. J Chem Phys 117:7162–7168Google Scholar
  8. 8.
    Emmeluth C, Suhm MA, Luckhaus D (2003) A monomers-in-dimers model for carboxylic acid dimers. J Chem Phys 118:2242–2255CrossRefGoogle Scholar
  9. 9.
    Nibbering ETJ, Elsaesser T (2004) Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase. Chem Rev 104:1887–1914CrossRefGoogle Scholar
  10. 10.
    Heyne K, Huse N, Dreyer J, Nibbering ETJ, Elsaesser T, Mukamel S (2004) Coherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase. J Chem Phys 121:902–913CrossRefGoogle Scholar
  11. 11.
    Huse N, Bruner BD, Covan ML, Drexer J, Nibbering ETJ, Miller RJD, Elsaesser T (2005) Anharmonic couplings underlying the ultrafast vibrational dynamics of hydrogen bonds in liquids. Phys Rev Lett 95(147402):1–4Google Scholar
  12. 12.
    Dreyer J (2005) Hydrogen-bonded acetic acid dimers: anharmonic coupling and linear infrared spectra studied with density-functional theory. J Chem Phys 122:184306Google Scholar
  13. 13.
    Benmalti ME-A, Blaise P, Flakus HT, Henri-Rousseau O (2006) Theoretical interpretation of the infrared lineshape of liquid and gaseous acetic acid. Chem Phys 320:267–274CrossRefGoogle Scholar
  14. 14.
    Elsaesser T (2009) Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase. Acc Chem Res 42:1220–1228CrossRefGoogle Scholar
  15. 15.
    Sander W, Gantenberg M (2005) Aggregation of acetic and propionic acid in argon matrices—a matrix isolation and computational study. Spectrochim Acta A 62:902–909Google Scholar
  16. 16.
    Hu YJ, Fu HB, Bernstein ER (2006) IR plus vacuum ultraviolet spectroscopy of neutral and ionic organic acid monomers and clusters: propanoic acid. J Chem Phys 125:184309Google Scholar
  17. 17.
    Koller FO, Huber M, Schrader TE, Schreier WJ, Zinth W (2007) Ultrafast vibrational excitation transfer and vibrational cooling of propionic acid dimer investigated with IR-pump IR-probe spectroscopy. Chem Phys 341:200–206CrossRefGoogle Scholar
  18. 18.
    Strieter FJ, Templeton DH, Scheuerman RF, Sass RL (1962) The crystal structure of propionic acid. Acta Cryst 15:1233–1239CrossRefGoogle Scholar
  19. 19.
    Durlak P, Morrison CA, Middlemiss DS, Latajka Z (2007) Car–Parrinello and path integral molecular dynamics study of the hydrogen bond in the chloroacetic acid dimer system. J Chem Phys 127:064304–064311Google Scholar
  20. 20.
    Dopieralski P, Latajka Z, Olovsson I (2009) Proton distribution in KHCO3 from ab initio molecular dynamics simulation. Chem Phys Lett 476:223–226Google Scholar
  21. 21.
    Dopieralski P, Panek J, Latajka Z (2009) First-principles investigation of isomerization by proton transfer in β-fumaric acid crystal. J Chem Phys 130:164517CrossRefGoogle Scholar
  22. 22.
    Durlak P, Latajka Z (2009) Car-Parrinello and path integral molecular dynamics study of the intramolecular hydrogen bond in the novel class of anionic H-chelates: 6-nitro-2,3-dipyrrol-2-ylquinoxaline anion. Chem Phys Lett 480:173–177Google Scholar
  23. 23.
    Yaremko AM, Ratajczak H, Barnes AJ, Baran J, Durak P, Latajka Z (2009) Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH (ν-OD) vibration of solid H- and D-benzoic acid. Chem Phys 364:51–63Google Scholar
  24. 24.
    Dopieralski PD, Latajka Z, Olovsson I (2010) Proton transfer dynamics in crystalline maleic acid from molecular dynamics calculations. J Chem Theory Comput 6:1455–1461CrossRefGoogle Scholar
  25. 25.
    Marx MP (1994) Ab initio path-integral molecular dynamics. Z Phys B 95:143–144Google Scholar
  26. 26.
    Marx D, Parrinello M (1996) Ab initio path integral molecular dynamics: basic ideas. J Chem Phys 104:4077–4082Google Scholar
  27. 27.
    Tuckerman M, Marx D, Klein ML, Parrinello M (1996) Efficient and general algorithms for path integral Car–Parrinello molecular dynamics. J Chem Phys 104:5579–5588Google Scholar
  28. 28.
    Frisch MJ et al (2004) Gaussian 03, revision C.02. Gaussian Inc., WallingfordGoogle Scholar
  29. 29.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78:1396–1396Google Scholar
  30. 30.
    Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023Google Scholar
  31. 31.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  32. 32.
    Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371CrossRefGoogle Scholar
  33. 33.
    Peterson KA, Woon DE, Dunning TH Jr (1994) Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H + H2 → H2 + H reaction. J Chem Phys 100:7410–7415CrossRefGoogle Scholar
  34. 34.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  35. 35.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  36. 36.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  37. 37.
    Barone VJ (2004) Vibrational zero-point energies and thermodynamic functions beyond the harmonic approximation. J Chem Phys 120:3059–3065CrossRefGoogle Scholar
  38. 38.
    Barone VJ (2005) Anharmonic vibrational properties by a fully automated second-order perturbative approach. J Chem Phys 122:014108–014118CrossRefGoogle Scholar
  39. 39.
    CPMD Consortium (2010) CPMD Consortium page.
  40. 40.
    Martyna J, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643Google Scholar
  41. 41.
    Perdew JP, Burke S, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868Google Scholar
  42. 42.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  43. 43.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38Google Scholar
  44. 44.
    Kohlmeyer A, Forbert H (2004) (v.1.4). A. Kohlmeyer, Ruhr-Universität Bochum, BochumGoogle Scholar
  45. 45.
    Forbert H, Kohlmeyer A (2002-2005) Fourier (v.2). H. Forbert, Ruhr-Universität Bochum, BochumGoogle Scholar
  46. 46.
    Zhao Y, Truhlar DG (2005) Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theor Comput 1:415–432CrossRefGoogle Scholar
  47. 47.
    Derissen JL (1971) An investigation of the structure of propionic acid monomer and dimer by gas electron diffraction. J Mol Struct 7:81–88CrossRefGoogle Scholar
  48. 48.
    Maçôas EMS, Khriachtchev L, Pettersson M, Fausto R, Räsänen M (2005) Internal rotation in propionic acid: near-infrared-induced isomerization in solid argon. J Phys Chem A 109:3617–3625Google Scholar
  49. 49.
    Maréchal Y (1987) IR spectra of carboxylic acids in the gas phase: a quantitative reinvestigation. J Chem Phys 87:6344–6353Google Scholar
  50. 50.
    Herman RC, Hofstadter R (1939) Vibration spectra and molecular structure. VII. Further infra-red studies on the vapors of some carboxylic acid. J Chem Phys 7:460–464CrossRefGoogle Scholar
  51. 51.
    Durlak P, Latajka Z (2009) Car–Parrinello molecular dynamics and density functional theory simulations of infrared spectra for acetic acid monomers and cyclic dimers. Chem Phys Lett 77:249–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity of WrocławWrocławPoland

Personalised recommendations