Journal of Molecular Modeling

, Volume 17, Issue 9, pp 2227–2235 | Cite as

Molecular dynamics of the “hydrophobic patch” that immobilizes hydrophobin protein HFBII on silicon

  • Clara Moldovan
  • Damien ThompsonEmail author
Original Paper


The experimentally-observed stable, electrically-conducting interface formed between hydrophobin protein HFBII and silicon provides a model system for the Bio/ICT interfaces required for bionanoelectronics. The present work used molecular dynamics (MD) computer simulations to investigate the atom-scale details of the assembly and structure of the HFBII/silicon interface, using models on the order of 40,000 atoms to compute energy profiles for the full protein interacting with a bare Si(111) substrate in aqueous solution. Five nanoseconds of free, equilibrated dynamics were performed for six models with initial protein:silicon separations ranging from 1.2 to 0.2 nanometers in steps of 0.2 nm. Three of the models formed extensive protein:silicon van der Waals’s interfacial contacts. The model with 0.2 nm starting separation serves as an illustrative example of the dynamic interface created, whereby hydrophobic patch residues cycle between flat and more protruding patch conformations that favor respectively close inter-patch and close patch-surface contacts, with protein:surface separations cycling between 0.2 and 0.4 nm over the 5 ns of dynamics. Analysis of residue-based binding energies at the interface reveal three leucines Leu19, Leu21 and Leu63, together with isoleucine Ile22 and alanine Ala61, as the primary drivers towards adhesion on bare silicon, providing the atom-scale details of HFBII’s hydrophobic patch which in turn provides leads for the engineering of more tightly-coupled interfaces.


Atom-scale computer simulations reveal the structure, dynamics and energetics of hydrophobin protein HFBII immobilisation on bare silicon, a prototype for ordered organic/inorganic interfaces in future bionanoelectronics devices.


Bio/ICT interfacing Computer simulation Hydrophobin Molecular dynamics Nanobiotechnology Protein engineering Self-assembly Silicon technology 



We wish to acknowledge support for this research from Science Foundation Ireland (SFI) under the UREKA Programme and also Enterprise Ireland Innovation Partnership project ORD3D. We acknowledge SFI for computing resources at Tyndall National Institute and SFI/ Higher Education Authority for computing time at the Irish Centre for High-End Computing (ICHEC).

Supplementary material

894_2010_887_MOESM1_ESM.doc (3.2 mb)
ESM 1 (DOC 3.16 MB)
894_2010_887_Fig6_ESM.gif (51.7 mb)
Supplementary Fig. S1

(GIF 51.7 MB)


  1. 1.
    Aggeli A, Bell M, Boden N, Keen JN, Knowles PF, McLeish TC, Pitkeathly M, Radford SE (1997) Nature 386:259–262CrossRefGoogle Scholar
  2. 2.
    Colombo G, Soto P, Gazit E (2007) Trends Biotechnol 25:211–218CrossRefGoogle Scholar
  3. 3.
    Whitesides GM, Lipomi DJ (2009) Faraday Discuss 143:373–384CrossRefGoogle Scholar
  4. 4.
    Nosonovsky M, Bhushan B (2008) Adv Func Mater 18:843–855CrossRefGoogle Scholar
  5. 5.
    Pum D, Neubauer A, Györvary E, Sára M, Sleytr UB (2000) Nanotechnol 11:100–107CrossRefGoogle Scholar
  6. 6.
    Talbot NJ (1999) Nature 398:295–296CrossRefGoogle Scholar
  7. 7.
    Wösten HA, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JG (1999) Curr Biol 9:85–88CrossRefGoogle Scholar
  8. 8.
    Hakanpaa J, Paananen A, Askolin S, Nakari-Setala T, Parkkinen T, Penttila M, Linder MB, Rouvinen J (2004) J Biol Chem 279:534–539CrossRefGoogle Scholar
  9. 9.
    Szilvay GR, Paananen A, Laurikainen K, Vuorimaa E, Lemmetyinen H, Peltonen J, Linder MB (2007) Biochemistry 46:2345–2354CrossRefGoogle Scholar
  10. 10.
    Kivioja JM, Kurppa K, Kainlauri M, Linder MB, Ahopelto J (2009) Appl Phys Lett 94:183901CrossRefGoogle Scholar
  11. 11.
    Zhao ZX, Qiao MQ, Yin F, Shao B, Wu BY, Wang YY, Wang XS, Qin X, Li S, Yu L, Chen Q (2007) Biosens Bioelectron 22:3021–3027CrossRefGoogle Scholar
  12. 12.
    Laaksonen P, Kainlauri M, Laaksonen T, Shchepetov A, Jiang H, Ahopelto J, Linder M (2010) Angew Chem Int Ed 49:4946–4949CrossRefGoogle Scholar
  13. 13.
    Lin Z, Strother T, Cai W, Cao X, Smith LM, Hamers RJ (2002) Langmuir 18:788–796CrossRefGoogle Scholar
  14. 14.
    Streifer JA, Kim H, Nichols BM, Hamers RJ (2005) Nanotechnology 16:1868–1873CrossRefGoogle Scholar
  15. 15.
    Nishiyama K, Hoshino T (2007) Appl Phys Lett 90:213901CrossRefGoogle Scholar
  16. 16.
    Ziegler KJ (2005) Trends Biotechnol 23:440–428CrossRefGoogle Scholar
  17. 17.
    Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  18. 18.
    MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S et al (1998) J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  19. 19.
    Lopes PEM, Murashov V, Tazi M, Demchuk E, MacKerell AD Jr (2006) J Phys Chem B 110:2782–2792CrossRefGoogle Scholar
  20. 20.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802CrossRefGoogle Scholar
  21. 21.
    Fan H, Wang X, Zhu J, Robillard GT, Mark AE (2006) Proteins 64:863–873CrossRefGoogle Scholar
  22. 22.
    Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M (2008) J Mol Biol 382:708–720CrossRefGoogle Scholar
  23. 23.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38CrossRefGoogle Scholar
  24. 24.
    Iori F, Di Felice R, Molinari E, Corni S (2009) J Comput Chem 30:1465–1476CrossRefGoogle Scholar
  25. 25.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103–1170CrossRefGoogle Scholar
  26. 26.
    Huskens J (2006) Curr Opin Chem Bio 10:537–543CrossRefGoogle Scholar
  27. 27.
    Kivlehan F, Lefoix M, Moynihan HA, Thompson D, Ogurtsov VI, Herzog G, Arrigan DWM (2010) Electrochim Acta 55:3348–3354CrossRefGoogle Scholar
  28. 28.
    Chan G, Mooney DJ (2008) Trends Biotechnol 26:382–392CrossRefGoogle Scholar
  29. 29.
    Hearn EM, Patel DK, van der Berg B (2008) Proc Natl Acad Sci USA 105:8601–8606CrossRefGoogle Scholar
  30. 30.
    Valo HK, Laaksonen PH, Peltonen LJ, Linder MB, Hirvonen JT, Laaksonen TJ (2010) ACS Nano 4:1750–1758CrossRefGoogle Scholar
  31. 31.
    Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Nature Biotechnol 23:1294–1301CrossRefGoogle Scholar
  32. 32.
    Hiratsuka Y, Miyata M, Tada T, Uyeda TQP (2006) Proc Natl Acad Sci USA 103:13618–13623CrossRefGoogle Scholar
  33. 33.
    Carter EA (2008) Science 321:800–803CrossRefGoogle Scholar
  34. 34.
    Klein MK, Shinoda W (2008) Science 321:798–800CrossRefGoogle Scholar
  35. 35.
    Ander M, Luzhkov VB, Aqvist J (2008) Biophys J 94:820–831CrossRefGoogle Scholar
  36. 36.
    Meinhold L, Smith JC, Kitao A, Zewail AH (2007) Proc Nat Acad Sci 104:17261–17265CrossRefGoogle Scholar
  37. 37.
    Thompson D (2007) Langmuir 23:8441–8451CrossRefGoogle Scholar
  38. 38.
    Thompson D, Miller C, McCarthy FO (2008) Biochemistry 47:10333–10344CrossRefGoogle Scholar
  39. 39.
    Gannon G, Greer JC, Larsson JA, Thompson D (2010) ACS Nano 4:921–932CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Theory Modelling and Design Centre, Tyndall National InstituteUniversity College CorkCorkIreland

Personalised recommendations