Skip to main content
Log in

Effect of alkyl substitution on H-bond strength of substituted amide-alcohol complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect of alkyl substitution (CH3, C2H5, n-C3H7, i-C3H7, and t-C4H9) on the hydrogen bond strengths (H-bond) of substituted amide-alcohol complexes has been systematically explored. B3LYP/aug-cc-pVDZ method was applied to a total of 215 alkyl substituted amide-alcohol complexes to delineate the effect of substitution on the H-bond strength; formamide-water complex is taken as reference point. Complexes are classified into five types depending on the hydrogen donor, acceptor and the site of alkyl substitution (Type-IA, Type-IIA, Type-IB, Type-IIB and Type-III). The strength of H-bond was correlated with geometrical parameters such as proton-acceptor (H∙∙∙∙Y) distance, the length of proton donating bond (X–H). In all the complexes N–H and O–H stretching frequencies are red-shifted. The effect of alkyl substitution on N–H and O–H stretching frequencies were analyzed. Topological parameters like electron density at H∙∙∙∙Y and X–H bond critical points as derived from atom in molecules (AIM) theory was also evaluated. When C = O group is participating in H-bond, the strength of H-bond decreases with increasing size of alcohols except for methanol (Type-IA, Type-III and Type-IB complexes). But it increases with increasing size of alkyl groups on amide and decreases with bulky groups. In the case of N–H group as H-bond donor, the strength of H-bond increases with increasing size of alcohols (Type-IIA and Type-IIB complexes) whereas decreases with increasing size of alkyl groups on amide. Type-IA, IIA, IB and IIB complexes exhibit good correlations among IE, H-bond distance and electron density at bcp. In Type-III complexes, average H-bond distance and sum of electron densities shows better correlation with IEs than the corresponding individuals. The correlation of IE less with electron density at RCP compared to sum of electron densities.

Effect of alkyl substitution on H-bond strengths of substituted amide-alcohol complexes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeffrey GA, Saenger W (1991) Hydrogen Bonding in Biological Structures. Springer, New York

    Google Scholar 

  2. Deechongkit S, Dawson PE, Kelly JW (2004) Toward Assessing the Position-Dependent Contributions of Backbone Hydrogen Bonding to β-Sheet Folding Thermodynamics Employing Amide-to-Ester Perturbations. J Am Chem Soc 126:16762–16771

    Article  CAS  Google Scholar 

  3. Noveron JC, Lah MS, Del Sesto RE, Arif AM, Miller JS, Stang PJ (2002) Engineering the Structure and Magnetic Properties of Crystalline Solids via the Metal-Directed Self-Assembly of a Versatile Molecular Building Unit. J Am Chem Soc 124:6613–6625

    Article  CAS  Google Scholar 

  4. Stockton WB, Rubner MF (1997) Molecular-Level Processing of Conjugated Polymers. 4. Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions. Macromolecules 30:2717–2725

    Article  CAS  Google Scholar 

  5. Vijay D, Zipse H, Sastry GN (2008) On the Cooperativity of Cation−π and Hydrogen Bonding Interactions. J Phys Chem B 112:8863–8867

    Article  CAS  Google Scholar 

  6. Sunita SS, Rohini NK, Kulkarni MG, Nagaraju M, Sastry GN (2007) Hydrogen Bonding in Trivinyl Monomers: Implications for Inclusion Complexation and Polymerization. Macromolecules 40:1824–1830

    Article  Google Scholar 

  7. Greenberg A, Breneman CM, Liebman JF (2002) The amide linkage: Structural significance in chemistry, biochemistry and materials science. Wiley, New York

    Google Scholar 

  8. Boyd DB (1993) Application of the hypersurface iterative projection method to bicyclic pyrazolidinone antibacterial agents. J Med Chem 36:1443–1449

    Article  CAS  Google Scholar 

  9. Jungheim LN, Boyd DB, Indelicato JM, Pasini CE, Preston DE, Alborn WE (1991) Synthesis, hydrolysis rates, supercomputer modeling, and antibacterial activity of bicyclic tetrahydropyridazinones. J Med Chem 34:1732–1739

    Article  CAS  Google Scholar 

  10. Michael MN (2005) The Ionic Hydrogen Bond. Chem Rev 105:213–284

    Article  Google Scholar 

  11. Custelcean R, Jackson JE (2001) Dihydrogen Bonding: Structures, Energetics, and Dynamics. Chem Rev 101:1963–1980

    Article  CAS  Google Scholar 

  12. Hobza P, Havlas Z (2000) Blue-Shifting Hydrogen Bonds. Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  13. Alkorta I, Rozas I, Elguero J (1998) Non-conventional hydrogen bonds. Chem Soc Rev 27:163–170

    Article  CAS  Google Scholar 

  14. Bryantsev VS, Hay BP (2005) Are C−H Groups Significant Hydrogen Bonding Sites in Anion Receptors? Benzene Complexes with Cl-, NO -3 , and ClO -4 . J Am Chem Soc 127:8282–8283

    Article  CAS  Google Scholar 

  15. Wilkens SJ, Westler WM, Weinhold F, Markley JL (2002) Trans-Hydrogen-Bond h2 J NN and h1 J NH Couplings in the DNA A−T Base Pair: Natural Bond Orbital Analysis. J Am Chem Soc 124:1190–1191

    Article  CAS  Google Scholar 

  16. Del Bene JE, Elguero J (2004) One-Bond Spin−Spin Coupling Constants of X−1H Proton Donors in Complexes with X−H−Y Hydrogen Bonds, for X = 13C, 15N, 17O, and 19F: Predictions, Comparisons, and Relationships among 1 J X-H, 1 K X-H, and X−H Distances. J Am Chem Soc 126:15624–15631

    Article  Google Scholar 

  17. Alonso JL, Antolinez S, Blanco S, Lesarri A, Lopez JC, Caminati W (2004) Weak C−H···O and C−H···F−C Hydrogen Bonds in the Oxirane−Trifluoromethane Dimer. J Am Chem Soc 126:3244–3249

    Article  CAS  Google Scholar 

  18. Thureau P, Ancian B, Viel S, Thevand A (2006) NMR diffusion and nuclear Overhauser investigation of the hydration properties of thymine: influence of the methyl group. Chem Commun 1884-1886

  19. Dai Q, Xu CY, Sato Y, Yoshimoto K, Nishizawa S, Teramae N (2006) Enhancement of the binding ability of a ligand for nucleobase recognition by introducing a methyl group. Anal Sci 22:201–203

    Article  CAS  Google Scholar 

  20. Chenoweth K, Dykstra CE (2005) Selecting weak bonding sites: effect of a methyl group in the acetylene–polyyne interaction. Chem Phys Lett 402:329–334

    Article  CAS  Google Scholar 

  21. Choi KH, Lee HJ, Karpfen A, Yoon CJ, Park J, Choi YS (2001) Hydrogen-bonding interaction of methyl-substituted pyridines with thioacetamide: steric hindrance of methyl group. Chem Phys Lett 345:338–344

    Article  CAS  Google Scholar 

  22. Ramos MN, Lopes KC, Silva WLV, Tavares AM, Castriani FA, do Monte SA, Ventura E, Araujo RCMU (2006) An ab initio study of the C2H2−HF, C2H(CH3)−HF and C2(CH3)2−HF hydrogen-bonded complexes. Spectrochim Acta A 63:383–390

    Article  Google Scholar 

  23. Papai I, Jancso G (2000) Hydrogen Bonding in Methyl-Substituted Pyridine−Water Complexes: A Theoretical Study. J Phys Chem A 104:2132–2137

    Article  CAS  Google Scholar 

  24. Qingzhong Li, Guoshi Wu, Zhiwu Yu (2006) The Role of Methyl Groups in the Formation of Hydrogen Bond in DMSO−Methanol Mixtures. J Am Chem Soc 128:1438–1439

    Article  Google Scholar 

  25. Qingzhong Li, Xiulin An, Luan F, Wenzuo Li, Gong B, Cheng J (2008) Regulating Function of Methyl Group in Strength of CH···O Hydrogen Bond: A High-Level Ab Initio Study. J Phys Chem A 112:3985–3990

    Article  Google Scholar 

  26. Lovas FJ, Suenram RD, Fraser GT (1988) The microwave spectrum of formamide–water and formamide–methanol complexes. J Chem Phys 88:722–729

    Article  CAS  Google Scholar 

  27. Jasien PG, Stevens WJ (1986) Ab initio study of the hydrogen bonding interactions of formamide with water and methanol. J Chem Phys 84:3271–3277

    Article  CAS  Google Scholar 

  28. Coitino EL, Irving K (1990) Theoretical studies of hydrogen-bonded complexes using semiempirical methods. J Mol Struct THEOCHEM 210:405–426

    Article  Google Scholar 

  29. Engdahl A, Nelander B (1993) Complex formation between water and formamide. J Chem Phys 99:4894–4907

    Article  CAS  Google Scholar 

  30. Sim F, Amant StA, Papai I, Salahub DR (1992) Gaussian density functional calculations on hydrogen-bonded systems. J Am Chem Soc 114:4391–4400

    Article  CAS  Google Scholar 

  31. Besley NA, Hirst JD (1999) Ab Initio Study of the Electronic Spectrum of Formamide with Explicit Solvent. J Am Chem Soc 121:8559–8566

    Article  CAS  Google Scholar 

  32. Dannenberg JJ (2006) Enthalpies of hydration of N-Methylacetamide by one, two, and three waters and the effect upon the C = O stretching frequency. An Ab initio DFT study. J Phys Chem A 110:5798–5802

    Article  CAS  Google Scholar 

  33. Pacios LF (2006) Computational study of the process of hydrogen bond breaking: The case of the formamide–formic acid complex. J Comput Chem 27:1641–1649

    Article  CAS  Google Scholar 

  34. Moisen S, Dannenberg JJ (2003) Molecular Orbital Calculations on the Protonation of Hydrogen-Bonded Formamide Chains. Implications for Peptides. J Phys Chem B 107:12842–12846

    Article  Google Scholar 

  35. Fu AP, Du DM, Zhou ZY (2003) Density functional theory study of the hydrogen bonding interaction of 1:1 complexes of formamide with methanol. Chem Phys Lett 377:537–543

    Article  CAS  Google Scholar 

  36. Fu AP, Du DM, Zhou Z (2003) Density functional theory study of the hydrogen bonding interaction of 1:1 complexes of formamide with water. J Mol Struct THEOCHEM 623:315–325

    Article  CAS  Google Scholar 

  37. Bende A, Suhai S (2005) BSSE-corrected geometry and harmonic and anharmonic vibrational frequencies of formamide–water and formamide–formamide dimers. Int J Quantum Chem 103:841–853

    Article  CAS  Google Scholar 

  38. Parreira RLT, Valdes H, Galembeck SE (2006) Computational study of formamide–water complexes using the SAPT and AIM methods. Chem Phys 331:96–110

    Article  CAS  Google Scholar 

  39. Rubicelia V, Jorge G, Richard AF, Harry S, Benjamin PH, David AD (2001) Strength of the N−H···O = C and C−H···O = C Bonds in Formamide and N-Methylacetamide Dimers. J Phys Chem A 105:4963–4968

    Article  Google Scholar 

  40. Lu JF, Zhou ZY, Zhao G, Wu QY (2005) Density functional theory study of the hydrogen bonding interaction in formamide dimer. J Mol Struct THEOCHEM 724:107–114

    Article  CAS  Google Scholar 

  41. Nagaraju M, Sastry GN (2010) Comparative study on formamide–water complex. Int J Quantum Chem 110:1994–2003

    CAS  Google Scholar 

  42. Frisch MJ et al (2003) Gaussian 03, Revision B.04. Gaussian Inc, Wallingford, CT

  43. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  44. Bader RFW (1990) Atoms in Molecules - A Quantum Theory. Oxford University Presss, Oxford, UK

    Google Scholar 

  45. Popelier P (2000) Atoms in Molecules: An Intriduction. Printice Hall, New York

    Google Scholar 

  46. Urban JJ, Tillman GB, Cronin AW (2006) Fluoroolefins as Peptide Mimetics: A Computational Study of Structure, Charge Distribution, Hydration, and Hydrogen Bonding. J Phys Chem A 110:11120–11129

    Article  CAS  Google Scholar 

  47. Langley CH, Allinger NL (2003) Molecular Mechanics (MM4) and ab Initio Study of Amide−Amide and Amide−Water Dimers. J Phys Chem A 107:5208–5216

    Article  CAS  Google Scholar 

  48. Vijay D, Sastry GN (2008) Exploring the size dependence of cyclic and acyclic π –systems on cation-π binding. Phys Chem Chem Phys 582-590

  49. Reddy AS, Vijay D, Sastry GM, Sastry GN (2006) From subtle to substantial: Role of metal ions on π-π interactions. J Phys Chem B 110:2479–2481

    Article  CAS  Google Scholar 

  50. Rao JS, Dinadayalane TC, Sastry GN, Leszczynski J (2008) A comprehensive study on the solvation of mono and di valent metal ions: Li+,Na+,K+,Be2+,Mg2+,and Ca2+. J Phys Chem A 112:12944–12953

    Article  CAS  Google Scholar 

  51. Rao JS, Zipse H, Sastry GN (2009) Explicit solvent effect on Cation-π interactions: A first principle investigation. J Phys Chem 113:7225–7236

    CAS  Google Scholar 

  52. Reddy AS, Zipse H, Sastry GN (2007) Cation-π interactions of bare and coordinately saturated metal ions: Contrasting structural and energetic characteristics. J Phys Chem B 111:1546–11553

    Article  Google Scholar 

  53. Alkorta I, Elguero J, Foces-Foces C (1996) Dihydrogen bonds (A–H∙∙∙∙∙H–B). Chem Commun 1633-1634

  54. González L, Mó O, Yáňez M (1997) High-Level ab Initio Calculations on the Intramolecular Hydrogen Bond in Thiomalonaldehyde. J Phys Chem A 101:9710–9719

    Article  Google Scholar 

  55. Espinosa E, Souhassou M, Lachekar H, Lecomte C (1999) Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr B 55:563–572

    Article  Google Scholar 

  56. Grabowski SJ (2000) High-Level Ab Initio Calculations of Dihydrogen-Bonded Complexes. J Phys Chem A 104:5551–5557

    Article  CAS  Google Scholar 

  57. Quiňonero D, Frontera A, Ballester P, Garau C, Costa A, Deyá PM (2001) A topological analysis of charge density in complexes between derivatives of squaric acid and ammonium cation. Chem Phys Lett 339:369–374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Narahari Sastry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figures

(DOC 2382 kb)

Tables

(DOC 330 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraju, M., Narahari Sastry, G. Effect of alkyl substitution on H-bond strength of substituted amide-alcohol complexes. J Mol Model 17, 1801–1816 (2011). https://doi.org/10.1007/s00894-010-0886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0886-2

Keywords

Navigation