Skip to main content
Log in

Theoretical study of structural patterns in CH2OP2 isomers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

DFT calculations have been performed on the derivatives of formula CH2OP2 to determine their total energy, the relative energy between the isomers and their geometry. Among compounds with a P-C-P linkage, the most stable one is the 2-hydroxy-1,2-diphosphirene II.1, a three-membered heterocycle with a P=C unsaturation. The phosphavinylidene(oxo)phosphorane HP=C=P(O)H IV.5 (which has the same skeleton as the experimentally obtained Mes*P=C=P(O)Mes*) lies 36.30 kcal mol-1 above it. The least stable compounds are carbenes; the singlet carbenes are more stable than the triplet ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Appel R, Knoll F, Ruppert I (1981) Phospha-alkenes and Phospha-alkynes, Genesis and Properties of the (p-p)π-Multiple Bond. Angew Chem Int Ed Engl 20:731–744. doi:10.1002/anie.198107311

    Article  Google Scholar 

  2. Phospha-alkene und Phospha-alkine, Genese und Charakteristika ihrer (p-p)π-Mehrfachbindung. Angew Chem 93:771-784. doi:10.1002/ange.19810930908

  3. Fluck E (1980) Compounds of phosphorus with coordination number 2. In: Grayson M, Griffith EJ (eds) Topics in phosphorus chemistry, vol 10. Wiley, New York, pp 193–284

    Google Scholar 

  4. Kroto HW (1982) Tilden Lecture. Semistable molecules in the laboratory and in space. Chem Soc Rev 11:435–491. doi:0.1039/CS9821100435

    Article  CAS  Google Scholar 

  5. Escudié J, Ranaivonjatovo H, Rigon L (2000) Heavy Allenes and Cumulenes E = C = E′ and E = C = C = E′ (E = P, As, Si, Ge, Sn; E′ = C, N, P, As, O, S). Chem Rev 100:3639–3696. doi:10.1021/cr990013z

    Article  Google Scholar 

  6. Escudié J, Ranaivonjatovo H, Bouslikhane M, El Harouch Y, Baiget L, Cretiu Nemes G (2004) Phosphasila-, phosphagerma-, and phosphaarsaallenes -P = C = E (E = Si, Ge, As) and arsa- and diarsaallenes -As = C = E′ (E′ = C, As). Russ Chem Bull 53:1020–1033. doi:10.1023/B:RUCB.0000041301.62839.ba

    Article  Google Scholar 

  7. Escudié J, Ranaivonjatovo H (2007) Group 14 and 15 Heteroallenes E = C = C and E = C = E′. Organometallics 26:1542–1559. doi:10.1021/om0610086

    Article  Google Scholar 

  8. Nguyen MT, Hegarty AF (1985) Structures and properties of carboimidophosphene (HP = C-NH) and carbodiphosphene (HP = C = PH). An ab initio study. J Chem Soc Perkin Trans 2:2005–2012. doi:10.1039/P29850002005

    Google Scholar 

  9. Fitzpatrick NJ, Brougham DF, Groarke PJ, Nguyen MT (1994) Effect of Fluorine and Chlorine Substituents on Stabilities of Diphosphaallene, Diphosphirene, and Phosphanylphosphaalkyne Isomers (XX′CP2 Species with X, X′ = H, F, and Cl). Chem Ber 127:969–978. doi:10.1002/cber.199412706022

    Article  CAS  Google Scholar 

  10. Yoshifuji M, Niitsu T, Toyota K, Inamoto N, Hirotsu K, Odagaki Y, Higuchi T, Nagase S (1988) X-ray structure of a sterically protected 1-aza-3-phosphaallene. Polyhedron 7:2213–2216. doi:10.1016/S0277-5387(00)81807-0

    Article  CAS  Google Scholar 

  11. Nguyen MT, Hegarty AF, McGinn MA, Ruelle F (1985) Structure and properties of phosphaketene (H–P = C = O): phosphorus versus oxygen protonation? J Chem Soc Perkin Trans 2:1991–1997. doi:10.1039/P29850001991

    Google Scholar 

  12. Septelean R, Ranaivonjatovo H, Nemes G, Escudié J, Silaghi-Dumitrescu I, Gornitzka H, Silaghi-Dumitrescu L, Massou S (2006) Phosphavinylidene(oxo)phosphorane Mes*P(O) = C = PMes*: a Diphosphaallene Featuring λ5σ3- and λ3σ2-Phosphorus Atoms. Eur J Inorg Chem 2006:4237–4241. doi:10.1002/ejic.200690043

    Article  Google Scholar 

  13. Dennington II R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, Version 4.1. Semichem Inc, Shawnee Mission, KS

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  15. Bergsträsser U (2005) Triple-bonded Heteroatom Derivatives Other than Nitriles with Another Heteroatom Attached to the sp Carbon Atom. In: Katritzky AR, Taylor RJK (eds) Comprehensive Organic Functional Group Transformations II, vol 5. Elsevier, Oxford, pp 1099–1111

    Google Scholar 

  16. Regitz M, Binger P (1988) Phosphaalkynes – Syntheses, reactions, coordination behavior. Angew Chem Int Ed 27:1484–1508. doi:10.1002/anie.198814841

    Article  Google Scholar 

  17. Markovski LN, Romanenko VD (1989) Phosphaalkynes and phosphaalkenes. Tetrahedron 45:6019–6090. doi:10.1016/S0040-4020(01)85121-8

    Article  Google Scholar 

  18. Arif AM, Barron AR, Cowley AH, Hall SW (1988) Reaction of the phospha-alkyne ArCP (Ar = 2,4,6-t-Bu3C6H2) with nucleophiles: a new approach to 1,3-diphosphabutadiene synthesis. J Chem Soc Chem Commun 171-172. doi:10.1039/C39880000171

  19. Lide DR (ed) (2009-2010) CRC Handbook of Chemistry and Physics, 90th edn. CRC Press, Boca Raton, Florida

  20. Karsch HH, Reisacher HU, Muller G (1984) Molecular Structure of a 1, 3-Diphosphaallene: (2, 4, 6-t-Bu3C6H2)P = C = P(2, 4, 6-t-Bu3C6H2), a Phosphorus Analogue of Carbon Disulfide. Angew Chem Int Ed Engl 23:618–619. doi:10.1002/anie.198406181

    Article  Google Scholar 

  21. Schubert U, Kappenstein C, Milewski-Mahrla B, Schmidbaur H (1981) Molekül- und Kristallstrukturen zweier Carbodiphosphorane mit PCP-Bindungswinkeln nahe 120&#x00B0. Chem Ber 114:3070–3078. doi:10.1002/cber.19811140914

    Article  CAS  Google Scholar 

  22. Hardy GE, Kaska WC, Chandra BP, Zink JI (1981) Triboluminescence-structure relationships in polymorphs of hexaphenylcarbodiphosphorane and anthranilic acid, molecular crystals, and salts. J Am Chem Soc 103:1074–1079. doi:10.1021/ja00395a014

    Article  CAS  Google Scholar 

  23. Martin D, Gornitzka H, Baceiredo A, Bertrand G (2005) C-Phosphoniophosphaalkenes as Precursors of 1σ4, 3σ2-Diphosphaallenes: scope and limitations. Eur J Inorg Chem 2005:2619–2624. doi:10.1002/ejic.200500014

    Article  Google Scholar 

  24. Shevchenko IV, Mikolenko RN, Lork E, Röschenthaler G–V (2001) Interaction of some methylenediphosphanes with hexafluoroacetone and hexafluorothioacetone dimer. Eur J Inorg Chem 2001:2377–2383. doi:10.1002/1099-0682(200109)2001:9<2377::AID-EJIC2377>3.0.CO;2-3

    Article  Google Scholar 

  25. Kato T, Gornitzka H, Baceiredo A, Bertrand G (2000) Synthesis, structure, and reactivity of a 1σ4, 3σ2-diphosphaallene. Angew Chem Int Ed Engl 39:3319–3321. doi:10.1002/1521-3773(20000915)39:18<3319::AID-ANIE3319>3.0.CO;2-M

    CAS  Google Scholar 

  26. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096. doi:10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

  27. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin

Download references

Acknowledgments

This work was supported by Consiliul National al Cercetarii Stiintifice din Invatamantul Superior (CNCSIS), project number PNII - ID_PCCE_140/2008. J.E. is thankful for partial financial support from European Cooperation in Science and Technology (EU COST) Action number CM0802 PhoSciNet. Radu Silaghi-Dumitrescu (Babes-Bolyai University) is thanked for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nemes Gabriela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Septelean, R., Petrar, P.M., Gabriela, N. et al. Theoretical study of structural patterns in CH2OP2 isomers. J Mol Model 17, 1719–1725 (2011). https://doi.org/10.1007/s00894-010-0872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0872-8

Keywords

Navigation