Skip to main content
Log in

Stucture of the complex between Mucor pusillus pepsin and the key domain of κ-casein for site-directed mutagenesis: a combined molecular modeling and docking approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the structural-based mutagenesis of Mucor pusillus pepsin (MPP), understanding how κ-casein interacts with MPP is a great challenge for us to explore. Chymosin-sensitive peptide is the key domain of κ-casein that regulates milk clotting through the specific proteolytic cleavage of its peptide bond (Phe105-Met106) by MPP to produce insoluble para-κ-casein. Here, we built the model of this large peptide using molecular modeling technique. Docking study showed that MPP can accommodate the designed model with a favorable binding energy and the docked complex has proven to locally resemble the inhibitor-chymosin complex. The catalytic mechanism for the peptide model binding with MPP was explored in terms of substrate-enzyme interaction and property of contacting surface. Some critical amino acid residues in the substrate binding cleft have been identified as an important guide for further site-directed mutagenesis. Glu13 and Leu11 in the S3 region of MPP, predicted as the special mutation sites, were confirmed to retain clotting activity and decrease the proteolytic activity. These novel mutants may provide a promising application for improving cheese flavor.

Novel mutants of mucor pusillus pepsin having a promising application for improving cheese flavor were found by using molecular modeling technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beppu T (1983) Trends Biotechnol 1:85–89

    Article  CAS  Google Scholar 

  2. Foltman B (1966) CR Trav Lab Carlsberg 35:143–231

    Google Scholar 

  3. Drøhse HB, Foltmann B (1989) Biochim Biophys Acta 995:221–224

    Article  Google Scholar 

  4. Martin P, Raymond MN, Bricas E, Dumas BR (1980) Biochim Biophys Acta 612:410–420

    CAS  Google Scholar 

  5. Jollès P, Alais C, Jollès J (1963) Biochim Biophys Acta 69:511–517

    Article  Google Scholar 

  6. Egitoa AS, Girardetc JM, Lagunaa LE, Poirsonc C, Molléb D, Micloc L, Humbertc G, Gaillardc JL (2007) Int Dairy J 17:816–825

    Article  Google Scholar 

  7. Yamashita T, Higashi S, Higashi T, Machida H, Iwasaki S, Nishiyama M, Beppu T (1994) J Biotechnol 32:17–28

    Article  CAS  Google Scholar 

  8. Branner-Jørgensen S, Eigtved P, Schneider P (1981) Neth Milk Dairy J 35:361–364

    Google Scholar 

  9. Yamashita T, Tonouchi N, Uozumi T, Beppu T (1987) Mol Gen Genet 210:462–467

    Article  CAS  Google Scholar 

  10. Hiramatsu R, Aikawa J, Horinouchi S, Beppu T (1989) J Biol Chem 264:16862–16866

    CAS  Google Scholar 

  11. Hiramatsu R, Yamashita T, Aikawa J, Horinouchi S, Beppu T (1990) Appl Environ Microbiol 56:2125–2132

    CAS  Google Scholar 

  12. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  13. Ouali M, King RD (2000) Protein Sci 9:1162–1176

    Article  CAS  Google Scholar 

  14. Pollastri G, Baldi P (2002) Bioinformatics 18(Suppl 1):S62–S70

    Article  Google Scholar 

  15. Lin K, Simossis VA, Taylor WR, Heringa J (2005) Bioinformatics 21:152–159

    Article  CAS  Google Scholar 

  16. Jones DT (1999) J Mol Biol 292:195–202

    Article  CAS  Google Scholar 

  17. Simossis VA, Heringa J (2004) Bioinformatics (in press)

  18. InsightII, Homology User Guide, SanDiego:Biosym/MSI (2000)

  19. Newman M, Watson F, Roychowdhury P, Jones H, Badasso M, Cleasby A, Wood SP, Tickle IJ, Blundell TL (1993) J Mol Biol 230:260–283

    Article  CAS  Google Scholar 

  20. Affinity San Diego Molecular Simulations Inc (2000)

  21. Bartlett PA, Shea GT, Telfer SJ, Waterman S (1989) R Soc Chem 182–196

  22. Shoichet BK, Kuntz ID, Bodian DL (1992) J Comput Chem 13:380–397

    Article  CAS  Google Scholar 

  23. Kunkel TA (1985) Proc Natl Acad Sci USA 82:488–492

    Article  CAS  Google Scholar 

  24. Zhang J, Zhang SQ, Wu X, Chen YQ, Diao ZY (2006) Process Biochem 41:251–256

    Article  CAS  Google Scholar 

  25. International Dairy Federation: Brussels, Belgium (1987) Calf rennet and adult bovine rennet:Determination of chymosin and bovine pepsin contents (chromatographic method). Standard 110A

  26. Chitpinityol S, Goode D, Crabbe MJC (1998) Food Chem 62:133–139

    Article  CAS  Google Scholar 

  27. Yamashita MM, Almassy RJ, Janson CA, Cascio D, Eisenberg D (1989) J Biol Chem 264:17681–17690

    CAS  Google Scholar 

  28. Groves MR, Dhanaraj V, Badasso M, Nugent P, Pitts JE, Hoover DJ, Blundell TL (1998) Protein Eng 11:833–840

    Article  CAS  Google Scholar 

  29. Chitpinityol S, Crabbe MJC (1998) Food Chem 61:395–418

    Article  CAS  Google Scholar 

  30. Pearl LH (1987) FEBS Lett 214:8–12

    Article  CAS  Google Scholar 

  31. Park YN, Aikawa J, Nishiyama M, Horinouchi S, Beppu T (1996) Protein Eng 9:869–875

    Article  CAS  Google Scholar 

  32. Aikawa J, Yamashita T, Nishiyama M, Horinouchi S, Beppu T (1990) J Biol Chem 265:13955–13959

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National 863 Program 2006AA10Z306, National Public Benefit Research (Agriculture) Foundation (200903043), China Postdoctoral Science Foundation funded project (20100471246), Natural Science Foundation of China (31071574), Natural Science Foundation for the Youth (21004028) and The Earmarked Fund for Modern Agro-industrial Technology Research Systems in China (Nycytx-05-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhennai Yang or Quan Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Wang, J., Li, Y. et al. Stucture of the complex between Mucor pusillus pepsin and the key domain of κ-casein for site-directed mutagenesis: a combined molecular modeling and docking approach. J Mol Model 17, 1661–1668 (2011). https://doi.org/10.1007/s00894-010-0869-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0869-3

Keywords

Navigation