Skip to main content
Log in

Molecular dynamics studies of human receptor molecule in hemagglutinin of 1918 and 2009 H1N1 influenza viruses

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations were carried out to study the behavior of human receptor molecule in the hemagglutinin (HA) of 1918 and 2009 H1N1 influenza viruses respectively. The 2009 HA model was obtained by virtually mutating the 1918 HA crystal structure based on A/Mexico City/MCIG01/2009(H1N1) segment 4 sequence. We found that human receptor molecule has no binding preference between the 2009 HA and the 1918 HA. In addition, among the four sugar moieties in the human receptor molecule, sialic acid contributes the most to the electrostatic and non-polar interaction energy during binding. Furthermore, the hydrogen bonds between sialic acid and the surrounding residues in 1918 HA are preserved in 2009 HA. We also found that the mutated residues contribute to a more favorable binding of hemagglutinin to the human receptor molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wiley DC, Skehel JJ (1987) The Structure and Function of the Hemagglutinin Membrane Glycoprotein of Influenza Virus. Ann Rev Biochem 56:365–394

    Article  CAS  Google Scholar 

  2. Skehel JJ, Wiley DC (2003) Receptor binding and membrane fusion in virus entry: The Influenza Hemagglutinin. Ann Rev Biochem 69:531–569

    Article  Google Scholar 

  3. Bucher D, Palese P (1975) The biologically active proteins of influenza virus: neuraminidase. Academic, New York

    Google Scholar 

  4. Palese P, Tobita K, Ueda M, Compans RW (1974) Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410

    Article  CAS  Google Scholar 

  5. Neumann G, Noda T, Kawaoka Y (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459:931–939

    Article  CAS  Google Scholar 

  6. World Health Organization (2010) Global Alert and Response (GAR) - Pandemic (H1N1) 2009. http://wwwwhoint/csr/disease/swineflu/en/ (accessed 13 July 2010)

  7. US Food and Drug Administration (2010) Influenza (Flu) antiviral drugs and related information. http://wwwfdagov/Drugs/DrugSafety/InformationbyDrugClass/ucm100228htm#ApprovedDrugs (accessed 13 July)

  8. Hancock K, Veguilla V, Lu X, Zhong W, Butler EN, Sun H, Liu F, Dong L, DeVos JR, Gargiullo PM, Brammer TL, Cox NJ, Tumpey TM, Katz JM (2009) Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med 361:1945–1952

    Article  CAS  Google Scholar 

  9. Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, Muramoto Y, Tamura D, Sakai-Tagawa Y, Noda T, Sakabe S, Imai M, Hatta Y, Watanabe S, Li C, Yamada S, Fujii K, Murakami S, Imai H, Kakugawa S, Ito M, Takano R, Iwatsuki-Horimoto K, Shimojima M, Horimoto T, Goto H, Takahashi K, Makino A, Ishigaki H, Nakayama M, Okamatsu M, Takahashi K, Warshauer D, Shult PA, Saito R, Suzuki H, Furuta Y, Yamashita M, Mitamura K, Nakano K, Nakamura M, Brockman-Schneider R, Mitamura H, Yamazaki M, Sugaya N, Suresh M, Ozawa M, Neumann G, Gern J, Kida H, Ogasawara K, Kawaoka Y (2009) In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460:1021–1025

    CAS  Google Scholar 

  10. Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE Jr, Wilson IA (2010) Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science 328:357–360

    Article  CAS  Google Scholar 

  11. Liu J, Stevens DJ, Haire LF, Walker PA, Coombs PJ, Russell RJ, Gamblin S, Skehel JJ (2009) Structures of receptor complexes formed by hemagglutinins from the asian influenza pandemic of 1957. Proc Nat Acad Sci 106:17175–17180

    Article  CAS  Google Scholar 

  12. Maestro version 80 Schrödinger LLC New York NY 2007

  13. Case DA, Darden TA, Cheatham Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) Amber 9

  14. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  15. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field carbohydrates. J Comput Chem 29:622–655

    Article  CAS  Google Scholar 

  16. Ryckaert JP, Ciccotti G, Berendsen HJ C (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  17. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  18. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  19. Cui Q, Sulea T, Schrag JD, Munger C, Hung MN, Naïm M, Cygler M, Purisima EO (2008) Molecular dynamics–solvated interaction energy studies of protein-protein interactions: the MP1–p14 scaffolding complex. J Mol Biol 379:787–802

    Article  CAS  Google Scholar 

  20. Naïm M, Bhat S, Rankin KN, Dennis S, Chowdhury SF, Siddiqi I, Drabik P, Sulea T, Bayly CI, Jakalian A, Purisima EO (2007) Solvated interaction energy (SIE) for scoring protein−ligand binding affinities 1 exploring the parameter space. J Chem Inf Model 47:122–133

    Article  Google Scholar 

  21. Åqvist J, Medina C, Samuelsson JE (1994) Protein Eng 7:385

    Article  Google Scholar 

  22. ChemBioDraw Ultra 11 Cambridgesoftcom 100. Cambridge Park Drive, Cambridge MA, 02140 USA

  23. Cheng XM, Liu XW (2007) Microwave-assisted one-pot synthesis of 3-acyl-5-hydroxybenzofurans. J Comb Chem 9:906–908

    Article  CAS  Google Scholar 

  24. Yang RL, Pasunooti KK, Li FP, Liu XW, Liu CF (2009) Dual native chemical ligation at lysine. J Am Chem Soc 131:13592–13593

    Article  CAS  Google Scholar 

  25. Gorityala BK, Cai ST, Lorpitthaya R, Ma JM, Pasunooti KK, Liu XW (2009) A convenient synthesis of pseudoglycosides by metal-free H3PO4 catalyst. Tetrahedron Lett 50:676–679

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DWZ is supported in part by Nanyang Technological University start-up grant, and in part by Singapore AcRF Tier 1 Grant of M52110095. DWZ would like to acknowledge and thank NTU HPC support and resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuri Huang or Dawei Zhang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, A.N., Hartono, Y.D., Sun, T. et al. Molecular dynamics studies of human receptor molecule in hemagglutinin of 1918 and 2009 H1N1 influenza viruses. J Mol Model 17, 1635–1641 (2011). https://doi.org/10.1007/s00894-010-0867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0867-5

Keywords

Navigation