Skip to main content
Log in

Molecular dynamics study of solvation effect on diffusivity changes of DNA fragments

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

DNA sequence analyzing and base pair separation techniques have attracted much attention, such as denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and capillary electrophoresis. However, details of sequence separation mechanisms in electrophoresis are not clarified enough. Understanding and controlling flow characteristics of DNA are important not only for fundamental research but also for further developments of bio-nano technologies. In the present study, we theoretically discuss the relationship between diffusivity and hydrated structures of DNA fragments in water solvent using molecular dynamics methods. In particular, influence of base pair substitutions on the diffusivity is investigated, focusing on an adenine-thymine (AT) rich B–DNA decamer 5’-dCGTATATATA-3’. Consequently, it is found that water molecules that concentrate on dissociated base pairs form hydrated structures and change the diffusivity of DNA decamers. The diffusion coefficients are affected by the substitution of GC for AT because of the different manner of interactions between the base molecules and water solvent. This result predicts a possibility of base pair separation according to differences in the diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Myers RM, Fischer SG, Lerman LS, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145

    Article  CAS  Google Scholar 

  2. Steighner RJ, Tully LA, Karjala JD, Coble MD, Holland MM (1999) Comparative identity and homogeneity testing of the mtDNA HV1 region using denaturing gradient gel electrophoresis. J Forensic Sci 44:1186–1198

    CAS  Google Scholar 

  3. Buch JS, Kimball C, Rosenberger F, Highsmith WE Jr, DeVoe DL, Lee CS (2004) DNA mutation detection in a polymer microfluidic network using temperature gradient gel electrophoresis. Anal Chem 76:874–881

    Article  CAS  Google Scholar 

  4. Danko P, Kozák A, Podhradský D, Víglaský V (2005) Analysis of DNA intercalating drugs by TGGE. J Biochem Biophys Methods 65:89–95

    Article  CAS  Google Scholar 

  5. Yasuda M, Shiaris MP (2005) Differentiation of bacterial strains by thermal gradient gel electrophoresis using non-GC-clamped PCR primers for the 16S–23S rDNA intergenic spacer region. FEMS Microbiology Lett 243:235–242

    Article  CAS  Google Scholar 

  6. Nataraj AJ, Olivos-Glander I, Kusukawa N, Highsmith WE Jr (1999) Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis 20:1177–1185

    Article  CAS  Google Scholar 

  7. Nakatani K (2004) Chemistry challenges in SNP typing. Chembiochem 5:1623–1633

    Article  CAS  Google Scholar 

  8. Peck K, Wung S-L, Chang G-S, Yen JJ, Hsieh Y-Z (1997) Restriction mapping of genes by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 69:1380–1384

    Article  CAS  Google Scholar 

  9. Mansfield ES, Robertson JM, Vainer M, Isenberg AR, Fraziel RR, Ferguson K, Chow S, Harris DW, Barker DL, Gill PD, Budowle B, McCord BR (1998) Analysis of multiplexed short tandem repeat (STR) systems using capillary array electrophoresis. Electrophoresis 19:101–107

    Article  CAS  Google Scholar 

  10. Schwinefus JJ, Morris MD (1999) Periodicity of λ DNA motions during field inversion electrophoresis in dilute hydroxyethyl cellulose visualized by high-speed video fluorescence microscopy. Macromol 32:3678–3684

    Article  CAS  Google Scholar 

  11. Klepárník K, Boček P (2007) DNA diagnostics by capillary electrophoresis. Chem Rev 107:5279–5317

    Article  Google Scholar 

  12. Kaji N, Tezuka Y, Takamura Y, Ueda M, Nishimoto T, Nakanishi H, Horiike Y, Baba Y (2004) Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Anal Chem 76:15–22

    Article  CAS  Google Scholar 

  13. Balducci A, Mao P, Han J, Doyle P (2006) Double-stranded DNA diffusion in slitlike nanochannels. Macromol 39:6273–6281

    Article  CAS  Google Scholar 

  14. Li B, Fang X, Luo H, Seo Y-S, Petersen E, Ji Y, Rafailovich M, Sokolov J, Gersappe D, Chu B (2006) Separation of DNA with different configurations on flat and nanopatterned surfaces. Anal Chem 78:4743–4751

    Article  CAS  Google Scholar 

  15. Tsutsui M, Taniguchi M, Kawai T (2009) Transverse field effects on DNA-sized particle dynamics. Nano Lett 9:1659–1662

    Article  CAS  Google Scholar 

  16. Salieb-Beugelaar GB, Teapal J, van Nieuwkasteele J, Wijnperlé D, Tegenfeldt JO, Lisdat F, van den Berg A, Eijkel JCT (2008) Field-dependent DNA mobility in 20 nm high nanoslits. Nano Lett pp. 1785–1790

  17. Taniguchi M, Kawai T (2006) DNA electronics. Physica E 33:1–12

    Article  CAS  Google Scholar 

  18. Nagahiro S, Kawano S, Kotera H (2007) Separation of long DNA chains using a nonuniform electric field: a numerical study. Phys Rev E 75:011902-1–011902-5

    Article  Google Scholar 

  19. Zhao X, Payne CM, Cummings PT (2008) Controlled translocation of DNA segments through nanoelectrode gaps from molecular dynamics. J Phys Chem Lett C 112:8–12

    Article  CAS  Google Scholar 

  20. Zwolak M, Ventra MD (2008) Colloquium: physical approaches to DNA sequencing and detection. Rev Mod Phys 80:141–165

    Article  Google Scholar 

  21. Doi K, Yonebayashi T, Kawano S (2010) Perturbation theory analysis for electronic response of DNA base pairs. J Mol Struct:THEOCHEM 939:97–105

    Article  CAS  Google Scholar 

  22. Kawano S (1998) Molecular dynamics of rupture phenomena in a liquid thread. Phys Rev E 58:4468–4472

    Article  CAS  Google Scholar 

  23. Hanasaki I, Haga T, Kawano S (2008) The antigen-antibody unbinding process through steered molecular dynamics of a complex of an Fv fragment and lysozyme. J Phys Condens Matter 20:255238-1–255238-10

    Google Scholar 

  24. Hanasaki I, Shintaku H, Matsunami S, Kawano S (2009) Structural and tensile properties of self-assembled DNA network on mica surface. Comput Model Eng Sci 46:191–207

    Google Scholar 

  25. Drew HR, Dickerson RE (1981) Structure of a B–DNA dodecamer III. Geometry of hydration J Mol Biol 151:535–556

    CAS  Google Scholar 

  26. Seibel GL, Singh UC, Kollman PA (1985) A molecular dynamics simulation of doublehelical B–DNA including counterions and water. Proc Nat Acad Sci USA 82:6537–6540

    Article  CAS  Google Scholar 

  27. Kurinov IV, Krupyanskii YF, Panchenko AR, Suzdalev IP, Uporov IV, Shanitan KV, Rubin AB, Goldanskii VI (1990) Intramolecular dynamics of hydrated DNA studied by rayleigh scattering of m¨ossbauer radiation (RSMR). Hyperfine Interact 58:2355–2358

    Article  CAS  Google Scholar 

  28. Auffinger P, Westhof E (2000) Water and ion binding around RNA and DNA (C, G) oligomers. J Mol Biol 300:1113–1131

    Article  CAS  Google Scholar 

  29. Chatake T, Tanaka I, Umino H, Arai S, Niimura N (2005) The hydration structure of a Z–DNA hexameric duplex determined by a neutron diffraction technique. Acta Crystallogr D61:1088–1098

    CAS  Google Scholar 

  30. Shi X, Macgregor RB Jr (2007) Volume and hydration changes of dna–ligand interactions. Biol Chem 125:471–482

    CAS  Google Scholar 

  31. Kistner C, André A, Fischer T, Thoma A, Janke C, Bartels A, Gisler T, Maret G, Dekorsyb T (2007) Hydration dynamics of oriented DNA films investigated by time-domain terahertz spectroscopy. Appl Phys Lett 90:233902-1–233902-3

    Article  Google Scholar 

  32. Toporowski JW, Reddy SY, Bruice TC (2007) An investigation of the ionic and solvation patterns of dsDNG versus dsDNA by use of molecular dynamics simulations. Biol Chem 126:132–139

    CAS  Google Scholar 

  33. Doi K, Haga T, Shintaku H, Kawano S (2010) Development of coarse graining DNA models for single nucleotide resolution analysis. Phil Trans R Soc A 368:2615–2628

    Article  CAS  Google Scholar 

  34. Chuprina VP, Heinemann U, Nurislamov AA, Zielenkiewicz P, Dickerson RE, Saenger W (1991) Molecular dynamics simulation of the hydration shell of a B-DNA decamer reveals two main types of minor-groove hydration depending on groove width. Proc Natl Acad Sci USA 88:593–597

    Article  CAS  Google Scholar 

  35. Brovchenko I, Krukau A, Oleinikova A, Mazur AK (2007) Water clustering and percolation in low hydration DNA shells. J Phys Chem B 111:3258–3266

    Article  CAS  Google Scholar 

  36. Mazur AK (2008) The electrostatic origin of low-hydration polymorphism in DNA. Chemphyschem 9:2691–2694

    Article  CAS  Google Scholar 

  37. Lewin B (2008) Genes IX. Jones and Bartlett, Sudbury, p 13

    Google Scholar 

  38. Shimizu N, Kawano S, Tachikawa M (2005) Electron correlated and density functional studies on hydrogen-bonded proton transfer in adenine–thymine base pair of DNA. J Mol Struct 735–736:243–248

    Article  Google Scholar 

  39. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 k. J Phys Chem A 105:9954–9960

    Article  CAS  Google Scholar 

  40. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-Alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  41. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Article  CAS  Google Scholar 

  42. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) computer code Amber 10. University of California, San Francisco

    Google Scholar 

  43. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford, p 60

    Google Scholar 

  44. Schneider B, Berman HM (1995) Hydration of the DNA bases is local. Biophys J 69:2661–2669

    Article  CAS  Google Scholar 

  45. Chalikian TV, Sarvazyan AP, Plum GE, Breslauer KJ (1994) Influence of base composition, base sequence, and duplex structure on DNA hydration: apparent molar volumes and apparent molar adiabatic compressibilities of synthetic and natural dna duplexes at 25°C. Biochemistry 33:2394–2401

    Article  CAS  Google Scholar 

  46. Pal SK, Zhao L, Zewail AH (2003) Water at DNA surfaces: ultrafast dynamics in minor groove recognition. Proc Natl Acad Sci USA 100:8113–8118

    Article  CAS  Google Scholar 

  47. Tsukamoto T, Ishikawa Y, Natsume T, Dedachi K, Kurita N (2007) A combined molecular dynamics/density-functional theoretical study on the structure and electronic properties of hydrating water molecules in the minor groove of decameric DNA duplex. Chem Phys Lett 441:136–142

    Article  CAS  Google Scholar 

  48. Komura I, Ishikawa Y, Tsukamoto T, Natsume T, Kurita N (2008) Density-functional calculations of hydrated structures and electronic properties for G–C and A–T base pairs. J Mol Struct:THEOCHEM 862:122–129

    Article  CAS  Google Scholar 

  49. Berashevich J, Chakraborty T (2008) Water induced weakly bound electrons in DNA. J Chem Phys 128:235101-1–235101-6

    Article  Google Scholar 

  50. Reddy SY, Leclerc F, Karplus M (2003) DNA polymorphism: a comparison of force fields for nucleic acids. Biophys J 84:1421–1449

    Article  CAS  Google Scholar 

  51. Nkodo AE, Garnier JM, Tinland B, Ren H, Desruisseaux C, McCormick LC, Drouin G, Slater GW (2001) Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis 22:2424–2432

    Article  CAS  Google Scholar 

  52. Yeh I-C, Hummer G (2004) Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations. Biophys J 86:681–689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Doi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doi, K., Uemura, T. & Kawano, S. Molecular dynamics study of solvation effect on diffusivity changes of DNA fragments. J Mol Model 17, 1457–1465 (2011). https://doi.org/10.1007/s00894-010-0840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0840-3

Keywords

Navigation