Skip to main content
Log in

A computational study of atomic oxygen-doped silicon carbide nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We investigated the properties of atomic oxygen-doped (O-doped) models of representative (6,0) and (4,4) silicon carbide nanotubes (SiCNTs) by density functional theory (DFT) calculations of isotropic and anisotropic chemical shielding (CS) parameters of Si-29, O-17 and C-13 atoms for the optimized structures. The calculated parameters indicated the effects of O-doping on the electronic environments of the first neighboring atoms of the doped sites. Comparing the results of the zigzag and armchair models also indicated that the latter model detects more effects of the O-doping than the former one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Mykhailenko O, Matsui D, Prylutskyy Y, Le Normand F, Eklund P, Scharff P (2007) J Mol Model 13:283–287

    Article  CAS  Google Scholar 

  3. Lal B (2007) J Mol Model 13:531–536

    Article  CAS  Google Scholar 

  4. Blasé X, Rubio A, Louie SG, Cohen ML (1994) Europhys Lett 28:335–340

    Article  Google Scholar 

  5. Miyamoto Y, Yu BD (2002) Appl Phys Lett 80:586–588

    Article  CAS  Google Scholar 

  6. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966–967

    Article  CAS  Google Scholar 

  7. Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) J Am Chem Soc 124:14464–14471

    Article  CAS  Google Scholar 

  8. Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O’Connor CJ, Politzer P (2003) Nano Lett 3:21–28

    Article  CAS  Google Scholar 

  9. Zhao M, Xia Y, Li F, Zhang RQ, Lee ST (2005) Phys Rev B 71:085312

    Article  Google Scholar 

  10. Gali A (18) Phys Rev B 73:245415

    Google Scholar 

  11. Zhang SL (2001) Phys Lett A 285:207–211

    Article  CAS  Google Scholar 

  12. Zhang JM, Chen LY, Wang SF, Xu KW (2010) Eur Phys J B. doi:10.1140/epjb/e2010-00020-y

  13. Menon M, Richter E, Mavrandonakis A, Froudakis G, Andriotis AN (2004) Phys Rev B 36:115322

    Article  Google Scholar 

  14. Taguchi T, Igawa N, Yamamoto H, Jitsukawa S (2005) J Am Ceram Soc 88:459–461

    Article  CAS  Google Scholar 

  15. Baumeier B, Krüger P, Pollmann J (2007) Phys Rev B 76:085407

    Article  Google Scholar 

  16. Moradian R, Nehzad S, Chegel R (2008) Physica B 403:3623–3626

    Article  CAS  Google Scholar 

  17. Moradian R, Nehzad S, Chegel R (2008) J Phys Condens Matter 20:465214

    Article  Google Scholar 

  18. Gao G, Park SH (2009) kang HS. Chem Phys 355:50–54

    Article  CAS  Google Scholar 

  19. Cao F, Xu X, Ren W, Zhao C (2010) J Phys Chem C 114:970–976

    Article  CAS  Google Scholar 

  20. Szabó Á, Gali A (2009) Phys Rev B 80:075425

    Article  Google Scholar 

  21. Bovey FA (1988) Nuclear Magnetic Resonance Spectroscopy. Academic, San Diego

    Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) GAUSSIAN 98. Gaussian Inc, Pittsburgh

    Google Scholar 

  23. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  24. Mirzaei M, Nouri A (2010) J Mol Struct Theochem 942:83–87

    Article  CAS  Google Scholar 

  25. Mirzaei M (2010) J Mol Model. doi:10.1007/s00894-010-0702-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzaei, M., Mirzaei, M. A computational study of atomic oxygen-doped silicon carbide nanotubes. J Mol Model 17, 527–531 (2011). https://doi.org/10.1007/s00894-010-0751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0751-3

Keywords

Navigation