Skip to main content
Log in

Molecular dynamics studies of the 3D structure and planar ligand binding of a quadruplex dimer

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

G-rich sequences can fold into a four-stranded structure called a G-quadruplex, and sequences with short loops are able to aggregate to form stable quadruplex multimers. Few studies have characterized the properties of this variety of quadruplex multimers. Using molecular modeling and molecular dynamics simulations, the present study investigated a dimeric G-quadruplex structure formed from a simple sequence of d(GGGTGGGTGGGTGGGT) (G1), and its interactions with a planar ligand of a perylene derivative (Tel03). A series of analytical methods, including free energy calculations and principal components analysis (PCA), was used. The results show that a dimer structure with stacked parallel monomer structures is maintained well during the entire simulation. Tel03 can bind to the dimer efficiently through end stacking, and the binding mode of the ligand stacked with the 3′-terminal thymine base is most favorable. PCA showed that the dominant motions in the free dimer occur on the loop regions, and the presence of the ligand reduces the flexibility of the loops. Our investigation will assist in understanding the geometric structure of stacked G-quadruplex multimers and may be helpful as a platform for rational drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen FM (1992) Biochemistry 31:3769–3776

    Article  CAS  Google Scholar 

  2. Henderson E, Hardin CC, Walk SK, Tinoco I Jr, Blackburn EH (1987) Cell 51:899–908

    Article  CAS  Google Scholar 

  3. Williamson JR, Raghuraman MK, Cech TR (1989) Cell 59:871–880

    Article  CAS  Google Scholar 

  4. Gellert M, Lipsett MN, Davies DR (1962) Proc Natl Acad Sci USA 48:2013–2018

    Article  CAS  Google Scholar 

  5. Davis JT (2004) Angew Chem Int Ed Engl 43:668–698

    Article  CAS  Google Scholar 

  6. Patel DJ, Bouaziz S, Kettani A, Wang Y (1999) In: Neidle S (ed) Oxford handbook of nucleic acid structures, chapter 13. Oxford University Press, Oxford, UK

  7. Rezler EM, Bearss DJ, Hurley LH (2002) Curr Opin Pharmacol 2:415–423

    Article  CAS  Google Scholar 

  8. Read M, Harrison RJ, Romagnoli B, Tanious FA, Gowan SH, Reszka AP, Wilson WD, Kelland LR, Neidle S (2001) Proc Natl Acad Sci USA 98:4844–4849

    Article  CAS  Google Scholar 

  9. Spackova N, Berger I, Sponer J (1999) J Am Chem Soc 121:5519–5534

    Article  CAS  Google Scholar 

  10. Spackova N, Cubero E, Sponer J, Orozco M (2004) J Am Chem Soc 126:14642–14650

    Article  CAS  Google Scholar 

  11. Bugaut A, Balasubramanian S (2008) Biochemistry 47:689–697

    Article  CAS  Google Scholar 

  12. Kumar N, Maiti S (2008) Nucleic Acids Res 36:5610–5622

    Article  CAS  Google Scholar 

  13. Hazel P, Huppert JL, Balasubramanian S, Neidle S (2004) J Am Chem Soc 126:16405–16415

    Article  CAS  Google Scholar 

  14. Rachwal PA, Findlow IS, Werner JM, Brown T, Fox KR (2007) Nucleic Acids Res 35:4214–4222

    Article  CAS  Google Scholar 

  15. Kumar N, Sahoo B, Maiti S, Maiti S (2008) Nucleic Acids Res 36:4433–4442

    Article  CAS  Google Scholar 

  16. Arora A, Maiti S (2009) J Phys Chem B 113:8784–8792

    Article  CAS  Google Scholar 

  17. Smargiasso N, Rosu F, Hsia W, Colson P, Shammel-Baker E, Bowers MT, De Pauw E, Gabelica V (2008) J Am Chem Soc 130:10208–10216

    Article  CAS  Google Scholar 

  18. Kato Y, Ohyama T, Mita H, Yamamoto Y (2005) J Am Chem Soc 127:9980–9981

    Article  CAS  Google Scholar 

  19. Li H, Yuan G, Du D (2008) J Am Soc Mass Spectrom 19:550–559

    Article  CAS  Google Scholar 

  20. Han FX, Wheelhouse RT, Hurley LH (1999) J Am Chem Soc 121:3561–3570

    Article  CAS  Google Scholar 

  21. David WM, Brodbelt J, Kerwin SM, Thomas PW (2002) Anal Chem 74:2029–2033

    Article  CAS  Google Scholar 

  22. Gavathiotis E, Heald RA, Stevens FG, Searle MS (2001) Angew Chem Int Ed 40:4749–4751

    Article  CAS  Google Scholar 

  23. Franceschin M, Alvino A, Casagrande V, Mauriello C, Pascucci E, Savino M, Ortaggi G, Bianco A (2007) Bioorg Med Chem 15:1848–1858

    Article  CAS  Google Scholar 

  24. Han HY, Langley DR, Rangan A, Hurley LH (2001) J Am Chem Soc 123:8902–8913

    Article  CAS  Google Scholar 

  25. Fedoroff OY, Salazar M, Han HY, Chemeris VV, Kerwin SM, Hurley LH (1998) Biochemistry 37:12367–12374

    Article  CAS  Google Scholar 

  26. Kern JT, Thomas PW, Kerwin SM (2002) Biochemistry 41:11379–11389

    Article  CAS  Google Scholar 

  27. Kerwin SM, Chen G, Kern JT, Thomas PW (2002) Bioorg Med Chem Lett 12:447–450

    Article  CAS  Google Scholar 

  28. Read MA, Neidle S (2000) Biochemistry 39:13422–13432

    Article  CAS  Google Scholar 

  29. Clark GR, Pytel PD, Squire CJ, Neidle S (2003) J Am Chem Soc 125:4066–4067

    Article  CAS  Google Scholar 

  30. Haider SM, Parkinson GN, Neidle S (2003) J Mol Biol 326:117–125

    Article  CAS  Google Scholar 

  31. Parkinson GN, Ghosh R, Neidle S (2007) Biochemistry 46:2390–2397

    Article  CAS  Google Scholar 

  32. Campbell NH, Parkinson GN, Reszka AR, Neidle S (2008) J Am Chem Soc 130:6722–6724

    Article  CAS  Google Scholar 

  33. Gavathiotis E, Heald RA, Stevens MF, Searle MS (2003) J Mol Biol 334:25–36

    Article  CAS  Google Scholar 

  34. Mehta AK, Shayo Y, Vankayalapati H, Hurley LH, Schaefer J (2004) Biochemistry 43:11953–11958

    Article  CAS  Google Scholar 

  35. Phan AT, Kuryavyi V, Gaw HY, Patel DJ (2005) Nat Chem Biol 1:167–173

    Article  CAS  Google Scholar 

  36. Parkinson GN, Cuenca F, Neidle S (2008) J Mol Biol 381:1145–1156

    Article  CAS  Google Scholar 

  37. Agrawal S, Prasad Ojha R, Maiti S (2008) J Phys Chem B 112:6828–6836

    Article  CAS  Google Scholar 

  38. Haider S, Parkinson GN, Neidle S (2008) Biophys J 95:296–311

    Article  CAS  Google Scholar 

  39. Li MH, Zhou YH, Luo Q, Li ZS (2009) J Mol Model 16:645–657

    Article  CAS  Google Scholar 

  40. INSIGHTII Modelling EnVironment, Molecular Simulations Inc (MSI) (1984)

  41. Price DJ, Brooks CL (2004) J Chem Phys 121:10096–10103

    Article  CAS  Google Scholar 

  42. Darden T, Perera L, Li L, Pedersen L (1999) Structure 7:R55–R60

    Article  CAS  Google Scholar 

  43. Hauptman HA (1997) Meth Enzymol 277:3–13

    Article  CAS  Google Scholar 

  44. Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Biophys J 92:3817–3829

    Article  CAS  Google Scholar 

  45. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker Ross C, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  46. Lu X, Olson W (2003) Nucleic Acids Res 31:5108–5121

    Article  CAS  Google Scholar 

  47. Babin V, Baucom J, Darden TA, Sagui C (2006) J Phys Chem B 110:11571–11581

    Article  CAS  Google Scholar 

  48. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:27–38

    Article  Google Scholar 

  49. Luo R, David L, Gilson MK (2002) J Comput Chem 23:1244–1253

    Article  CAS  Google Scholar 

  50. Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978–1988

    Article  CAS  Google Scholar 

  51. Fadrna E, Spackova N, Stefl R, Koca J, Cheatham TE III, Sponer J (2004) Biophys J 87:227–242

    Article  CAS  Google Scholar 

  52. Amadei A, Linssen AB, Berendsen HJ (1993) Proteins 17:412–425

    Article  CAS  Google Scholar 

  53. Kitao A, Go N (1999) Curr Opin Struct Biol 9:164–169

    Article  CAS  Google Scholar 

  54. Hess B (2000) Phys Rev E 62:8438–8448

    Article  CAS  Google Scholar 

  55. Hess B (2002) Phys Rev E 65(3 Part 1):031910

    Article  Google Scholar 

  56. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) J Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  57. Wang J, Morin P, Wang W, Kollman PA (2001) J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  58. Ferrari AM, Degliesposti G, Sgobba M, Rastelli G (2007) Bioorg Med Chem 15:7865–7877

    Article  CAS  Google Scholar 

  59. Spackova N, Cheatham TE III, Ryjacek F, Lankas F, van Meervelt L, Hobza P, Sponer J (2003) J Am Chem Soc 125:1759–1769

    Article  CAS  Google Scholar 

  60. Fadrna E, Spackova N, Sarzynska J, Koca J, Orozco M, Cheatham TE III, Kulinski T, Sponer J (2009) J Chem Theor Comput 5:2514–2530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (20973049, 20673044), PCSIRT (IRT0625). We would like to thank professor David A. Case et al. for giving us the Amber 10.0 software as freeware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Sheng Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

  (DOC 289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, MH., Luo, Q., Xue, XG. et al. Molecular dynamics studies of the 3D structure and planar ligand binding of a quadruplex dimer. J Mol Model 17, 515–526 (2011). https://doi.org/10.1007/s00894-010-0746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0746-0

Keywords

Navigation