Skip to main content
Log in

DFT investigation on the reaction mechanism catalyzed by α-phosphomannomutase1 in protonated/deprotonated states

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Congenital disorder of glycosylation type 1a (CDG-1a) which is a congenital disease, is caused by mutations in α-Phosphomannomutase1. The reaction mechanism of the α-phosphomannomutase1 enzyme has been investigated by means of density functional theory using the hybrid functional B3LYP. The α-phosphomannomutase1 catalyzes the interconversion of the α-D-mannose 1-phosphate to D-mannose 6-phosphate via a mannose-1,6-(bis) phosphate intermediate. The quantum chemical models, which were chosen in protonated/deprotonated states models, were built on the basis of the docking result. The process of the phosphoryl group transferred from Asp19 to the mannose 6-phosphate is in different steps in the two states, but are both coupled with the protons transfer. Our computational results support the hypothesis that the Asp19 as a nucleophile plays an important role in the α-phosphomannomutase1 biology function, and indicate Gln62 could help to stabilize the phosphoryl group and the structure of the substrate. In addition, we can conjecture that the deprotonated state is more suitable for product release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Westphal V, Enns GM, McCracken MF, Freeze HH (2001) Functional analysis of novel mutations in a congenital disorder of glycosylation Ia patient with mixed Asian ancestry. Mol Genet Metab 73:71–76

    Article  CAS  Google Scholar 

  2. Pirard M, Achouri Y, Collet JF, Schollen E, Matthijs G, Van Schaftingen E (1999) Kinetic properties and tissular distribution of mammalian phosphomannomutase isozymes. Biochem J 339:201–207

    Article  CAS  Google Scholar 

  3. Matthijs G, Schollen E, Pardon E, Veiga-Da-Cunha M, Jaeken J, Cassiman JJ, van Schaftingen E (1997) Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet 16:88–92

    Article  CAS  Google Scholar 

  4. Matthijs G, Schollen E, Van Schaftingen E, Cassiman JJ, Jaeken J (1998) Lack of homozygotes for the most frequent disease allele in carbohydrate-deficient glycoprotein syndrome type 1A. Am J Hum Genet 62:542–550

    Article  CAS  Google Scholar 

  5. Neumann LM, von Moers A, Kunze J, Blankenstein O, Marquardt T (2003) Congenital disorder of glycosylation type 1a in a macrosomic 16-month-old boy with an atypical phenotype and homozygosity of the N216I mutation. Eur J Pediatr 162:710–713

    Article  Google Scholar 

  6. Van Schaftingen E, Jaeken J (1995) Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 377:318–320

    Article  Google Scholar 

  7. Westphal V, Srikrishna G, Freeze HH (2000) Congenital disorders of glycosylation: have you encountered them? Genet Med 2:329–337

    Article  CAS  Google Scholar 

  8. Marquardt T, Hasilik M, Niehues R, Herting M, Muntau A, Holzbach U (1997) Mannose therapy in carbohydrate-deficient glycoprotein syndrome type I: first results from a German multicenter study. Amino Acids 12:389

    Google Scholar 

  9. Kristiansson B, Borulf S, Conradi N, Erlanson-Albertsson C, Ryd W, Stibler H (1998) Intestinal, pancreatic and hepatic involvement in carbohydrate-deficient glycoprotein syndrome type I. J Pediatr Gastroenterol Nutr 27:23–29

    Article  CAS  Google Scholar 

  10. Carchon H, van Schaftingen E, Matthijs G, Jaeken J (1999) Carbohydrate-deficient glycoprotein syndrome type IA (phosphomannomutase-deficiency). Biochim Biophys Acta 1455:155–165

    CAS  Google Scholar 

  11. Heykants L, Schollen E, Grünewald S, Matthijs G (2001) Identification and localization of two mouse phosphomannomutase genes, Pmm1 and Pmm2. Gene 270:53–59

    Article  CAS  Google Scholar 

  12. Silvaggi NR, Zhang C, Lu Z, Dai J, Dunaway-Mariano D, Allen KN (2006) The X-ray crystal structures of human alpha-phosphomannomutase 1 reveal the structural basis of congenital disorder of glycosylation type 1a. J Biol Chem 281:14918–14926

    Article  CAS  Google Scholar 

  13. Dai JB, Liu Y, Ray WJ Jr, Konno M (1992) The crystal structure of muscle phosphoglucomutase refined at 2.7-angstrom resolution. J Biol Chem 267:6322–6337

    CAS  Google Scholar 

  14. Naught LE, Tipton PA (2001) Kinetic mechanism and pH dependence of the kinetic parameters of Pseudomonas aeruginosa phosphomannomutase / phosphoglucomutase. Arch Biochem Biophys 396:111–118

    Article  CAS  Google Scholar 

  15. Regni C, Schramm AM, Beamer LJ (2006) The reaction of phosphohexomutase from Pseudomonas aeruginosa: structural insights into a simple processive enzyme. J Biol Chem 281:15564–15571

    Article  CAS  Google Scholar 

  16. Cheng Y, Zhang Y, McCammon JA (2005) How does the cAMP-dependent protein kinase catalyze the phosphorylation reaction: an ab initio QM/MM study. J Am Chem Soc 127:1553–1562

    Article  CAS  Google Scholar 

  17. Corminboeuf C, Hu P, Tuckerman ME, Zhang Y (2006) Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein. J Am Chem Soc 128:4530–4531

    Article  CAS  Google Scholar 

  18. Chen SL, Marino T, Fang WH, Russo N, Himo F (2008) Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from Aeromonas proteolytica: a density functional theory study. J Phys Chem B 112:2494–2500

    Article  CAS  Google Scholar 

  19. Insight II User Guide, Accelrys Inc, San Diego, 2000

  20. Discover3 User Guide, Accelrys Inc, San Diego, 2000

  21. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  23. Becke AD (1992) Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  25. Gaussian 03, Revision A.1, Gaussian Inc, Pittsburgh PA, 2003

  26. Velichkova P, Himo F (2006) Theoretical study of the methyl transfer in guanidinoacetate methyltransferase. J Phys Chem B 110:16–19

    Article  CAS  Google Scholar 

  27. Velichkova P, Himo F (2005) Methyl transfer in glycine N-methyltransferase. A theoretical study. J Phys Chem B 109:8216–8219

    Article  CAS  Google Scholar 

  28. Hopmann KH, Himo F (2008) Cyanolysis and azidolysis of epoxides by haloalcohol dehalogenase: theoretical study of the reaction mechanism and origins of regioselectivity. Biochemistry 47:4973–4982

    Article  CAS  Google Scholar 

  29. Himo F (2006) Quantum chemical modeling of enzyme active sites and reaction mechanisms. Theor Chem Acc 116:232–240

    Article  CAS  Google Scholar 

  30. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China, Key Projects in the National Science & Technology Pillar Program, Specialized Research Fund for the Doctoral Program of Higher Education, and Specialized Fund for the Basic Research of Jilin University (Grant Nos. 20903045, 20573042, 2006BAE03B01, 20070183046, and 200810018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, HY., Zheng, QC., Li, X. et al. DFT investigation on the reaction mechanism catalyzed by α-phosphomannomutase1 in protonated/deprotonated states. J Mol Model 17, 577–585 (2011). https://doi.org/10.1007/s00894-010-0743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0743-3

Keywords

Navigation