Skip to main content
Log in

Docking study and binding free energy calculation of poly (ADP-ribose) polymerase inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Recently, the massively parallel computation of absolute binding free energy with a well-equilibrated system (MP-CAFEE) has been developed. The present study aimed to determine whether the MP-CAFEE method is useful for drug discovery research. In the drug discovery process, it is important for computational chemists to predict the binding affinity accurately without detailed structural information for protein / ligand complex. We investigated the absolute binding free energies for Poly (ADP-ribose) polymerase-1 (PARP-1) / inhibitor complexes, using the MP-CAFEE method. Although each docking model was used as an input structure, it was found that the absolute binding free energies calculated by MP-CAFEE are well consistent with the experimental ones. The accuracy of this method is much higher than that using molecular mechanics Poisson-Boltzmann / surface area (MM / PBSA). Although the simulation time is quite extensive, the reliable predictor of binding free energies would be a useful tool for drug discovery projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nguewa PA, Fuertes MA, Alonso C, Petéz JM (2003) Mol Pharmacol 64:1007–1014

    Article  CAS  Google Scholar 

  2. LaPlaca MC, Zhang J, Raghupathi R, Li JH, Smith F, Bareyre FM, Snyder SH, Graham DI, Mclntosh TK (2001) J Neurotrauma 18:369–376

    Article  CAS  Google Scholar 

  3. Mandir AS, Przedborski S, Jackson-Lewis V, Wang Z, Simbulan-Rosenthal CM, Smulson ME, Hoffman BE, Guastella DB, Dawson VL, Dawson TM (1999) Proc Natl Acad Sci USA 96:5774–5779

    Article  CAS  Google Scholar 

  4. Menear KA, Adcock C, Boulter R, Cockcroft XL, Cranston CL, Dillon KJ A, Drzewiecki J, Garman S, Gomez S, Javaid H, Kerrigan F, Knights C, Lau A, Loh VM Jr, Matthews IT, Moore S, O'Connor MJ, Smith GC, Martin NM (2008) J Med Chem 51:6581–6591

    Article  CAS  Google Scholar 

  5. Southan GJ, Szabó C (2003) Curr Med Chem 10:321–340

    CAS  Google Scholar 

  6. Meirovitch H, Cheluvaraja S, White RP (2009) Curr Protein Pept Sci 10:229–243

    Article  CAS  Google Scholar 

  7. Fukunishi Y, Mitomo D, Nakamura H (2009) J Chem Inf Model 49:1944–1951

    Article  CAS  Google Scholar 

  8. Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2005) Nat Biotechnol 23:201–207

    Article  CAS  Google Scholar 

  9. Lyne PD, Lamb ML, Saeh JC (2006) J Med Chem 49:4805–4808

    Article  CAS  Google Scholar 

  10. Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) J Am Chem Soc 130:2817–2831

    Article  CAS  Google Scholar 

  11. Beveridge DL, DiCapua FM, Beveridge DL, DiCapua FM (1989) Annu Rev Biophys Biophys Chem 18:431–492

    Article  CAS  Google Scholar 

  12. Kollman P (1993) Chem Rev 93:2395–2417

    Article  CAS  Google Scholar 

  13. Jarzynski C (1997) Phys Rev Lett 78:2690–2693

    Article  CAS  Google Scholar 

  14. Shirts MR, Bair E, Hooker G, Pande VS (2003) Phys Rev Lett 91:140601

    Article  Google Scholar 

  15. Fujitani H, Tanida Y, Matsuura A (2009) Phys Rev E 79:021914

    Article  Google Scholar 

  16. Tanida Y, Ito M, Fujitani H (2007) Chem Phys 337:135–143

    Article  CAS  Google Scholar 

  17. Hattori K, Kido Y, Yamamoto H, Ishida J, Kamijo K, Murano K, Ohkubo M, Kinoshita T, Iwashita A, Mihara K, Yamazaki S, Matsuoka N, Teramura Y, Miyake H (2004) J Med Chem 47:4151–4154

    Article  CAS  Google Scholar 

  18. Kinoshita T, Nakanishi I, Warizuka M, Iwashita Y, Kido Y, Hattori K, Fujii T (2004) FEBS Lett 556:43–46

    Article  CAS  Google Scholar 

  19. MOE is a product of Chemical Computing Group, Inc, 1010 Sherbrooke Street West, Suite 910, Montreal, Quebec, Canada

  20. Gold is a product of a collaboration between the University of Sheffield, GlaxoSmithKline plc and Cambridge Structural Database System (CCDC). It is available from CCDC (12 Union Road, Cambridge, CB2 1EZ, UK)

  21. Berendsen HJC, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91:43–46

    Article  CAS  Google Scholar 

  22. Lindahl E, Hess B, van der Spoel D (2001) J Mol Model 7:306–317

    CAS  Google Scholar 

  23. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701–1718

    Article  Google Scholar 

  24. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  25. Gordon MS, Schmidt MW (2005) Theory and Applications of Computational Chemistry: the first forty years. Elsevier, Amsterdam

    Google Scholar 

  26. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  27. Wang J, Wang W, Kollman PA, Case DA (2006) J Mol Graph Model 25:247–260

    Article  Google Scholar 

  28. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  29. Fujitani H, Matsuura A, Sakai S, Sato H, Tanida Y (2009) J Chem Theor Comput 5:1155–1156

    Article  CAS  Google Scholar 

  30. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  31. Nosé S (1984) Mol Phys 52:255–268

    Article  Google Scholar 

  32. Hoover WG (1985) Phys Rev A 31:1695–1697

    Article  Google Scholar 

  33. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  34. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  35. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  36. Chang C, Chen W, Gilson MK (2005) J Chem Theor Comput 1:1017–1028

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank E. Lindahl for help in modifying GROMACS. The authors thank Ms. Mariko Katsuyama, Mr. Makoto Takeuchi, Dr. Yuzo Matsumoto, Ms. Naoko Katayama, Dr. Makoto Oku, Ms. Ayako Moritomo, Dr. Kenichi Mori, and Dr. Hideyoshi Fuji for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Orita.

Additional information

Kazuki Ohno and Takashi Mitsui equally contribute to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, K., Mitsui, T., Tanida, Y. et al. Docking study and binding free energy calculation of poly (ADP-ribose) polymerase inhibitors. J Mol Model 17, 383–389 (2011). https://doi.org/10.1007/s00894-010-0728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0728-2

Keywords

Navigation