Skip to main content
Log in

Molecular modeling studies of Fatty acyl-CoA synthetase (FadD13) from Mycobacterium tuberculosis—a potential target for the development of antitubercular drugs

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) is a global health problem and the situation has become more precarious due to the advent of HIV infections and continuous rise in the number of multi-drug resistant strains of Mycobacterium tuberculosis (M. tb). Biochemical studies on Fatty Acyl-CoA Synthetases (FadD13), one of the gene products of mymA operon, have provided insights into the involvement of this protein in the activation of fatty acids. Due to non-availability of the crystal structure of FadD13, we have employed in silico approaches to resolve and characterize the structure of this important protein of M. tb. A three dimensional model of M. tb FadD13 was predicted by a de novo structure prediction server that integrates fragment assembly with SimFold energy function. With the aid of molecular mechanics and dynamics methods, the final model was obtained and assessed subsequently for global and local accuracy by various assessment programs. With this model, a flexible docking study with the substrates was performed. Results of ligand interactions with key amino acids in the binding site are also summarized. The molecular model for the M. tb FadD13 obtained sheds light on the topographical features of the binding pocket of the protein and provides atomic insight into the possible modes of substrate recognition. The three-dimensional model of FadD13 presented here would be helpful in guiding both enzymatic studies as well as design of specific inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organization (2007) Tuberculosis facts http://www.who.int/tb/publications/2007/factsheet_2007.pdf

  2. World Health Organization (2002) Factsheet No 104: tuberculosis. WHO, Geneva http://www.who.int/mediacentre/factsheets/fs104/en/

  3. Snider DE Jr, Raviglione M, Kochi A (1994) Global burden of tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection, and control. American Society for Microbiology, Washington, DC, pp 3–11

    Google Scholar 

  4. Dunlap NE, Bass J, Fujiwara P, Hopewell P, Horsburgh CR Jr, Salfinger M, Simione PM (2000) Diagnostic standards and classification of tuberculosis in adults and children. Am J Respir Crit Care Med 161:1376–1395

    Google Scholar 

  5. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelto J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  Google Scholar 

  6. Mdluli K, Spigelman M (2006) Novel targets for tuberculosis drug discovery. Curr Opin Pharmacol 6:459–467

    Article  CAS  Google Scholar 

  7. Hasan S, Daugelat S, Rao PS, Schreiber M (2006) Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis. PLoS Comput Biol 2:e61

    Article  Google Scholar 

  8. Baker EN (2007) Structural genomics as an approach towards understanding the biology of tuberculosis. J Struct Funct Genomics 8:57–65

    Article  CAS  Google Scholar 

  9. Terwilliger TC, Park MS, Waldo GS, Berendzen J, Hung LW, Kim CY, Smith CV, Sacchettini JC, Bellinzoni M, Bossi R, De Rossi E, Mattevi A, Milano A, Riccardi G, Rizzi M, Roberts MM, Coker AR, Fossati G, Mascagni P, Coates AR, Wood SP, Goulding CW, Apostol MI, Anderson DH, Gill HS, Eisenberg DS, Taneja B, Mande S, Pohl E, Lamzin V, Tucker P, Wilmanns M, Colovos C, Meyer-Klaucke W, Munro AW, McLean KJ, Marshall KR, Leys D, Yang JK, Yoon HJ, Lee BI, Lee MG, Kwak JE, Han BW, Lee JY, Baek SH, Suh SW, Komen MM, Arcus VL, Baker EN, Lott JS, Jacobs W Jr, Alber T, Rupp B (2003) The TB structural genomics consortium: a resource for Mycobacterium tuberculosis biology. Tuberculosis (Edinb) 83:223–249

    Article  CAS  Google Scholar 

  10. Celia W, Goulding L, Jeanne P, Daniel A, Michael RS, Duilio C, Marcin IA, Sum C, Angineh P, Shui-Shu W, Yim W, Vicent C, Harindarpal SG, David E (2003) Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA. Biophys Chem 105:361–370

    Article  Google Scholar 

  11. Payne DJ (2004) The potential of bacterial fatty acid biosynthetic enzymes as a source of novel antibacterial agents. Drug News Perspect 17:187–194

    Article  CAS  Google Scholar 

  12. Wright HT, Reynolds KA (2007) Antibacterial targets in fatty acid biosynthesis. Curr Opin Microbiol 10:447–453

    Article  CAS  Google Scholar 

  13. Daffe M, Draper P (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203

    Article  CAS  Google Scholar 

  14. Singh A, Gupta R, Vishwakarma RA, Narayanan PR, Paramasivan CN, Ramanathan VD, Tyagi AK (2005) Requirement of the mymA operon for appropriate cell wall ultrastructure and persistence of Mycobacterium tuberculosis in the spleens of guinea pigs. J Bacteriol 187:4173–4186

    Article  CAS  Google Scholar 

  15. Fisher MA, Plikaytis BB, Shinnick TM (2002) Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184:4025–4032

    Article  CAS  Google Scholar 

  16. Groot PHE, Scholte HR, Hulsmann WC (1976) Fatty acid activation: specificity, localization, and function. Adv Lipid Res 14:75–126

    CAS  Google Scholar 

  17. Black PN, Zhang Q, Weimar JD, DiRusso CC (1997) Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem 272:4896–4903

    Article  CAS  Google Scholar 

  18. Branchini BR, Murtiashaw MH, Magyar RA, Anderson SM (2000) The role of lysine 529, a conserved residue of the acyl-adenylate-forming enzyme superfamily, in firefly luciferase. Biochemistry 39:5433–5440

    Article  CAS  Google Scholar 

  19. Horswill AR, Escalante-Semerena JC (2002) Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis. Biochemistry 41:2379–2387

    Article  CAS  Google Scholar 

  20. Meloni I, Muscettola M, Raynaud M, Longo I, Bruttini M, Moizard MP, Gomot M, Chelly J, des Portes V, Fryns JP, Ropers HH, Magi B, Bellan C, Volpi N, Yntema HG, Lewis SE, Schaffer JE, Renieri A (2002) FACL4, encoding fatty acid-CoA ligase 4, is mutated in nonspecific X-linked mental retardation. Nat Genet 30:436–440

    Article  CAS  Google Scholar 

  21. Khare G, Gupta V, Gupta RK, Gupta R, Bhat R, Tyagi AK (2009) Dissecting the role of critical residues and substrate preference of a fatty acyl-CoA synthetase (FadD13) of mycobacterium tuberculosis. PLoS ONE 4:e8387. doi:10.1371/journal.pone.0008387

    Article  Google Scholar 

  22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  23. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 50:3389–3402

    Article  Google Scholar 

  24. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  Google Scholar 

  25. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  Google Scholar 

  26. Finn RD, Tate J, Mistry J, Coggill PC, Sammut JS, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288

    Article  CAS  Google Scholar 

  27. Lambert C, Leonard N, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18:1250–1256

    Article  CAS  Google Scholar 

  28. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  Google Scholar 

  29. Prime 2.0 (2008) Schrödinger, LLC, New York, NY

  30. Eswar N, Marti-Renom MA, Webb B, Madhusudhan MS, Eramian D, Shen M, Pieper U, Sali A (2006) Comparative protein structure modeling with MODELLER. In: Curr Protoc Bioinformatics, Supplement 15, pp 5.6.1–5.6.30

  31. Bennett-Lovsey RM, Hebert AD, Sternberg MJE, Kelley LA (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70:611–625

    Article  CAS  Google Scholar 

  32. Fujitsuka Y, Chikenji G, Takada S (2005) SimFold energy function for de novo protein structure prediction: consensus with Rosetta. Proteins 62:381–398

    Article  Google Scholar 

  33. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  34. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  CAS  Google Scholar 

  35. Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  Google Scholar 

  36. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Nov 11–17, Florida

  37. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  38. Jorgensen WL, Madura JD (1985) Temperature and size dependence for monte carlo simulations of TIP4P water. Mol Phys 56:1381–1392

    Article  CAS  Google Scholar 

  39. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N.log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  40. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 23:327–341

    Article  CAS  Google Scholar 

  41. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics method. J Chem Phys 81:511–519

    Article  Google Scholar 

  42. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  43. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale minimization. Math Program 45:503–528

    Article  Google Scholar 

  44. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  45. Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086

    Article  CAS  Google Scholar 

  46. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  47. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  48. Laurie ATR, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  CAS  Google Scholar 

  49. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acid Res 34:W116–W118

    Article  CAS  Google Scholar 

  50. Hisanaga Y, Ago H, Nakagawa N, Hamada K, Ida K, Yamamoto M, Hori T, Arii Y, Sugahara M, Kuramitsu S, Yokoyama S, Miyano M (2004) Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer. J Biol Chem 279:31717–31726

    Article  CAS  Google Scholar 

  51. Schrödinger Suite 2009 Induced Fit Docking protocol. Glide 5.5 (2009) Schrödinger, LLC, New York, NY. Prime 2.1 (2009) Schrödinger, LLC, New York, NY

  52. LigPrep 2.2 (2005) Schrödinger, LLC, New York, NY

  53. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  Google Scholar 

  54. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  CAS  Google Scholar 

  55. Diemand AV, Scheib H (2004) iMolTalk: an interactive, internet-based protein structure analysis server. Nucleic Acids Res 32:W512–W516

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by funding from Department of Biotechnology, Ministry of Science and Technology, Govt. of India. NJ is thankful to University Grants Commission for providing fellowship. GK is grateful to the Council of Scientific and Industrial Research for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanan Latha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jatana, N., Jangid, S., Khare, G. et al. Molecular modeling studies of Fatty acyl-CoA synthetase (FadD13) from Mycobacterium tuberculosis—a potential target for the development of antitubercular drugs. J Mol Model 17, 301–313 (2011). https://doi.org/10.1007/s00894-010-0727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0727-3

Keywords

Navigation