Skip to main content
Log in

A force field for dynamic Cu-BTC metal-organic framework

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A new force field that can describe the flexibility of Cu-BTC metal-organic framework (MOF) was developed in this work. Part of the parameters were obtained using density functional theory calculations, and the others were taken from other force fields. The new force field could reproduce well the experimental crystal structure, negative thermal expansion, vibrational properties as well as adsorption behavior in Cu-BTC. In addition, the bulk modulus of Cu-BTC was predicted using the new force field. We believe the new force field is useful in understanding the structure-property relationships for MOFs, and the approach can be extended to other MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214. doi:10.1039/b618320b

    Article  Google Scholar 

  2. Snurr RQ, Hupp JT, Nguyen ST (2004) Prospects for nanoporous metal-organic materials in advanced separations processes. AIChE J 50:1090–1095. doi:10.1002/aic.10101

    Article  CAS  Google Scholar 

  3. Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44:4670–4679. doi::10.1002/anie.200462786

    Article  CAS  Google Scholar 

  4. Düren T, Sarkisov L, Yaghi OM, Snurr RQ (2004) Design of new materials for methane storage. Langmuir 20:2683–2689. doi:10.1021/la0355500

    Article  Google Scholar 

  5. Yang Q, Zhong C (2005) Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. J Phys Chem B 109:11862–11864. doi:10.1021/jp051903n

    Article  CAS  Google Scholar 

  6. Garberoglio G, Skoulidas AI, Johnson JK (2005) Adsorption of gases in metal organic materials: comparison of simulations and experiments. J Phys Chem B 109:13094–13103. doi:10.1021/jp050948l

    Article  CAS  Google Scholar 

  7. Skoulidas AI, Sholl DS (2005) Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. J Phys Chem B 109:15760–15768. doi:10.1021/jp051771y

    Article  CAS  Google Scholar 

  8. Yang Q, Zhong C (2006) Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study. ChemPhysChem 7:1417–1421. doi:10.1002/cphc.200600191

    Article  CAS  Google Scholar 

  9. Düren T, Snurr RQ (2004) Assessment of isoreticular metal-organic frameworks for adsorption separations: a molecular simulation study of methane/n-butane mixtures. J Phys Chem B 108:15703–15708. doi:10.1021/jp0477856

    Article  Google Scholar 

  10. Ramsahye NA, Maurin G, Bourrelly S, Llewellyn P, Loiseau T, Férey G (2007) Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO2 adsorption in the MIL-53 (Al) system. Phys Chem Chem Phys 9:1059–1063. doi:10.1039/b613378a

    Article  CAS  Google Scholar 

  11. Rappé AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. doi:10.1021/ja00051a040

    Article  Google Scholar 

  12. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909. doi:10.1021/j100389a010

    Article  CAS  Google Scholar 

  13. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. doi:10.1021/ja9621760

    Article  CAS  Google Scholar 

  14. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Structure and energetics of ligand binding to proteins: Escherichia coZi dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Struct, Function, Bioinformat 4:31–47. doi:10.1002/prot.340040106

    Article  CAS  Google Scholar 

  15. Bourrelly S, Llewellyn PL, Serre C, Millange F, Loiseau T, Férey G (2005) Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J Am Chem Soc 127:13519–13521. doi:10.1021/ja054668v

    Article  CAS  Google Scholar 

  16. Wu Y, Kobayashi A, Halder GJ, Peterson VK, Chapman KW, LockN SPD, Kepert CJ (2008) Negative thermal expansion in the metal-organic framework material Cu3(1, 3, 5-benzenetricarboxylate)2. Angew Chem Int Ed 47:8929–8933. doi:10.1002/anie.200803925

    Article  CAS  Google Scholar 

  17. Uemura K, Matsuda R, Kitagawa S (2005) Flexible microporous coordination polymers. J Solid State Chem 178:2420–2429. doi:10.1016/j.jssc.2005.05.036

    Article  CAS  Google Scholar 

  18. Greathouse JA, Allendorf MD (2006) The interaction of water with MOF-5 simulated by molecular dynamics. J Am Chem Soc 128:10678–10679. doi:10.1021/ja063506b

    Article  CAS  Google Scholar 

  19. Greathouse JA, Allendorf MD (2008) Force field validation for molecular dynamics simulations of IRMOF-1 and other isoreticular zinc carboxylate coordination polymers. J Phys Chem C 112:5795–58002. doi:10.1021/jp076853w

    Article  CAS  Google Scholar 

  20. Dubbeldam D, Walton KS, Ellis DE, Snurr RQ (2007) Exceptional negative thermal expansion in isoreticular metal-organic frameworks. Angew Chem Int Ed 46:4496–4499. doi:10.1002/anie.200700218

    Article  CAS  Google Scholar 

  21. Huang BL, McGaughey AJH, Kaviany M (2007) Thermal conductivity of metal-organic framework 5 (MOF-5): part I. Molecular dynamics simulations. Int J Heat Mass Transfer 50:393–404. doi:10.1016/j.ijheatmasstransfer.2006.10.002

    Article  CAS  Google Scholar 

  22. Tafipolsky M, Amirjalayer S, Schmid R (2007) Ab initio parametrized MM3 force field for the metal-organic framework MOF-5. J Comput Chem 28:1169–1176. doi:10.1002/jcc.20648

    Article  CAS  Google Scholar 

  23. Amirjalayer S, Tafipolsky M, Schmid R (2007) Molecular dynamics simulation of benzene diffusion in MOF-5: importance of lattice dynamics. Angew Chem Int Ed 46:463–466. doi:10.1002/anie.200601746

    Article  CAS  Google Scholar 

  24. Salles F, Ghoufi A, Maurin G, Bell RG, Mellot-Draznieks C, Férey G (2008) Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption. Angew Chem Int Ed 47:8487–8491. doi:10.1002/anie.200803067

    Article  CAS  Google Scholar 

  25. Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150. doi:10.1126/science.283.5405.1148

    Article  CAS  Google Scholar 

  26. Vishnyakov A, Ravikovitch PI, Neimark AV, Bülow M, Wang QM (2003) Nanopore structure and sorption properties of Cu-BTC metal-organic framework. Nano Lett 3:713–718. doi:10.1021/nl0341281

    Article  CAS  Google Scholar 

  27. Yang Q, Zhong C (2006) Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. J Phys Chem B 110:17776–17783. doi:10.1021/jp062723w

    Article  CAS  Google Scholar 

  28. Frisch MJ, Truchks GW, Schlegel HB et al (2003) Gaussian 03 Rev B1. Gaussian Inc, Pittsburgh

    Google Scholar 

  29. Plimpton SJ, Pollock R, Stevens M (1997) Particle-Mesh Ewald and rRESPA for parallel molecular dynamics simulations. Eighth SIAM Conference on Parallel Processing for Scientific Computing

  30. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  31. Kaitner B, Paulić N, Pavlović G, Sabolović J (1999) Bis(L-N, N-dipropylalaninato)copper(II) X-ray crystal structure, the crystal structure prediction and conformational analysis with a new force field. Polyhedron 18:2301–2311. doi:10.1016/S0277-5387(99)00128-X

    Article  CAS  Google Scholar 

  32. Sipachev VA (1985) Calulation of shrinkage corrections in harmonic approximation. J Mol Struct, Theochem 121:143–151

    Article  Google Scholar 

  33. Harris JG, Yung KH (1995) Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J Phys Chem 99:12021–12024

    Article  CAS  Google Scholar 

  34. Prestipino C, Regli L, Vitillo JG, Bonino F, Damin A, Lamberti C, Zecchina A, Solari PL, Kongshaug KO, Bordiga S (2006) Local structure of framework Cu(II) in HKUST-1 metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chem Mater 18:1337–1346. doi:10.1021/cm052191g

    Article  CAS  Google Scholar 

  35. Valencia F, Romero AH, Hernandez E, Terrones M, Terrones H (2003) Theoretical characterization of several models of nanoporous carbon. New J Phys 5:123.1–123.16

    Article  Google Scholar 

  36. Liang Z, Marshall M, Chaffee AL (2009) CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23:2785–2789. doi:10.1021/ef800938e

    Article  CAS  Google Scholar 

  37. Greathouse JA, Kinnibrugh TL, Allendorf MD (2009) Adsorption and separation of noble gases by IRMOF-1: grand canonical Monte Carlo simulations. Ind Eng Chem Res 48:3425–3431. doi:10.1021/ie801294n

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. A. Greathouse, M. Tafipolsky, V. A. Sipachev, F. Salles and J. Sabolobić for helpful suggestions. The financial support of the Natural Science Foundation of China NSFC (Nos. 20725622, 20876006, 20821004) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongli Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Yang, Q., Ma, Q. et al. A force field for dynamic Cu-BTC metal-organic framework. J Mol Model 17, 227–234 (2011). https://doi.org/10.1007/s00894-010-0720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0720-x

Keywords

Navigation