Skip to main content
Log in

Conformational analysis of piperazine and piperidine analogs of GBR 12909: stochastic approach to evaluating the effects of force fields and solvent

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Analogs of the flexible dopamine reuptake inhibitor, GBR 12909 (1), may have potential utility in the treatment of cocaine abuse. As a first step in the 3D-QSAR modeling of the dopamine transporter (DAT)/serotonin transporter (SERT) selectivity of these compounds, we carried out conformational analyses of two analogs of 1: a piperazine (2) and a related piperidine (3). Ensembles of conformers consisting of local minima on the potential energy surface of the molecule were generated in the vacuum phase and in implicit solvent by random search conformational analysis using the Tripos and MMFF94 force fields. Some differences were noted in the conformer populations due to differences in the treatment of the tertiary amine nitrogen and ether oxygen atom types by the force fields. The force fields also differed in their descriptions of internal rotation around the C(sp 3)–O(sp 3) bond proximal to the bisphenyl moiety. Molecular orbital calculations at the HF/6-31G(d) and B3LYP/6-31G(d) levels of C–O internal rotation in model compound (5), designed to model the effect of the proximity of the bisphenyl group on C-O internal rotation, showed a broad region of low energy between −60° to 60° with minima at both −60° and 30° and a low rotational barrier at 0°, in closer agreement with the MMFF94 results than the Tripos results. Molecular mechanics calculations on model compound (6) showed that the MMFF94 force field was much more sensitive than the Tripos force field to the effects of the bisphenyl moiety on C–O internal rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14:299–302

    Article  CAS  Google Scholar 

  2. Prisinzano T, Rice KC, Baumann MH, Rothman RB (2004) Development of neurochemical normalization (“agonist substitution”) therapeutics for stimulant abuse: focus on the dopamine uptake inhibitor, GBR 12909. Curr Med Chem Cent Nerv Syst Agents 4:47–59

    Google Scholar 

  3. Runyon SP, Carroll FI (2006) Dopamine transporter ligands: recent developments and therapeutic potential. Curr Top Med Chem 6:1825–1843

    Article  CAS  Google Scholar 

  4. Benedetti P, Mannhold R, Cruciani G, Pastor M (2002) GBR compounds and mepyramines as cocaine abuse therapeutics: chemometric studies on selectivity using grid independent descriptions. J Med Chem 45:1577–1584

    Article  CAS  Google Scholar 

  5. Gilbert KM, Boos TL, Dersch CM, Greiner E, Jacobson AE, Lewis D, Matecka D, Prisinzano TE, Zhang Y, Rothman RB, Rice KC, Venanzi CA (2007) DAT/SERT selectivity of flexible GBR 12909 analogs modeled using 3D-QSAR methods. Bioorg Med Chem 15:1146–1159

    Article  CAS  Google Scholar 

  6. Dutta AK, Meltzer PC, Madras BK (1993) Positional importance of the nitrogen atom in novel piperidine analogs of GBR 12909: affinity and selectivity for the dopamine transporter. Med Chem Res 3:209–222

    CAS  Google Scholar 

  7. Dutta AK, Xu C, Reith ME (1996) Structure–activity relationship studies of novel 4-[2-[bis(4-fluorophenyl)methoxy]ethyl]-1-(3-phenylpropyl)piperidine analogs: synthesis and biological evaluation at the dopamine and serotonin transporter sites. J Med Chem 39:749–756

    Google Scholar 

  8. Dutta AK, Reith MEA, Madras BK (2001) Synthesis and preliminary characterization of a high-affinity novel radioligand for the dopamine transporter. Synapse 39:175–181

    Article  CAS  Google Scholar 

  9. Prisinzano T, Greiner E, Johnson EM II, Dersch CM, Marcus J, Partilla JS, Rothman RB, Jacobson AE, Rice KC (2002) Piperadine analogues of GBR 12909: high affinity ligands for the dopamine transporter. J Med Chem 45:4371–4374

    Article  CAS  Google Scholar 

  10. Greiner E, Boos TL, Prisinzano TE, De Martino MG, Zeglis B, Dersch CM, Marcus J, Partilla JS, Rothman RB, Jacobson AE, Rice KC (2006) Design and synthesis of promiscuous high-affinity monoamine transporter ligands: unraveling transporter selectivity. J Med Chem 49:1766–1772

    Article  CAS  Google Scholar 

  11. Zhang S, Fernandez F, Hazeldine S, Deschamps JR, Zhen J, Reith MA, Dutta AK (2006) Further structural exploration of trisubstituted asymmetric pyran derivatives (2S,4R,5R)-2-benzhydryl-5-benzylamino-tetrahydropyran-4-ol and their corresponding disubstituted (3S,6S)-pyran derivatives: a proposed pharmacophore model for high affinity interaction with the dopamine, serotonin, and norepinephrine transporters. J Med Chem 49:4239–4247

    Google Scholar 

  12. Boyd DB, Coner RD (1996) Stochastic approach to force field evaluations: conformational analysis of raloxifene, a potential new therapeutic agent for post-menopausal osteoporosis. J Mol Struct 368:7–15

    CAS  Google Scholar 

  13. Matecka D, Lewis D, Rothman RB, Dersch CM, Wojnicki FHE, Glowa JR, De Vries AC, Pert A, Rice KC (1997) Heteroaromatic analogs of 1-[2-(diphenylmethoxy)ethyl]- and 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazines (GBR 12935 and GBR 12909) as high-affinity dopamine reuptake inhibitors. J Med Chem 40:705–716

    Google Scholar 

  14. Clark M, Cramer RD III, Van Opdenbosch N (1989) Validation of the general purpose TRIPOS 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  15. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  16. Halgren TA (1996) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17:520–552

    Article  CAS  Google Scholar 

  17. Halgren TA (1996) Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553–586

    Article  CAS  Google Scholar 

  18. Halgren TA (1996) Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J Comput Chem 17:587–615

    CAS  Google Scholar 

  19. Halgren TA, Nachbar R (1996) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comput Chem 17:616–641

    Article  CAS  Google Scholar 

  20. Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20:720–729

    Article  CAS  Google Scholar 

  21. Halgren TA (1999) MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J Comput Chem 20:730–748

    Article  CAS  Google Scholar 

  22. Gundertofte K, Liljefors T, Norrby P, Pettersson I (1996) A comparison of conformational energies calculated by several molecular mechanics methods. J Comput Chem 17:429–449

    Article  CAS  Google Scholar 

  23. Liljefors T, Gundertofte K, Norby P, Pettersson I (2004) Molecular mechanics and comparison of force fields. In: Bultinck P, Tollenaere JP, Langenaeker W, Winter HD (eds) Computational medicinal chemistry for drug discovery. Marcel Dekker, New York, pp 1–28

    Google Scholar 

  24. Banerjee A, Misra M, Pai D, Shih LY, Woodley R, Lu XJ, Srinivasan AR, Olson WK, Davé RN, Venanzi CA (2007) Feature extraction using molecular planes for fuzzy relational clustering of a flexible dopamine reuptake inhibitor. J Chem Inf Model 47:2216–2227

    Article  CAS  Google Scholar 

  25. Misra M, Banerjee A, Davé RN, Venanzi CA (2005) Novel feature extraction technique for fuzzy relational clustering of a flexible dopamine reuptake inhibitor. J Chem Inf Model 45:610–623

    Article  CAS  Google Scholar 

  26. Berfield JL, Wang LC, Reith MEA (1999) Which form of dopamine is the substrate for the human dopamine transporter: the cationic or the uncharged species? J Biol Chem 274:4876–4882

    Article  CAS  Google Scholar 

  27. Xu C, Reith MEA (1996) Modeling the pH dependence of the binding of WIN 35,428 to the dopamine transporter in rat striatal membranes: is the bioactive form positively charged or neutral? J Pharmacol Exp Ther 278:1340–1348

    Google Scholar 

  28. Gilbert KA, Skawinski WJ, Misra M, Paris K, Naik N, Deutsch HM, Venanzi CA (2004) Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods. J Comput Aided Mol Des 18:719–738

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 C.02.pp. Gaussian Inc., Wallingford

  30. Dewar MJS, Zoebisch EG, Healy EE, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  31. Chambers CC, Hawkins GD, Cramer CJ, Truhlar DG (1996) Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. J Phys Chem 100:16385–16398

    Article  CAS  Google Scholar 

  32. Saunders M (1987) Stochastic exploration of molecular mechanics energy surfaces. Hunting for the global minimum. J Am Chem Soc 109:3150–3152

    Article  CAS  Google Scholar 

  33. Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12:241–254

    Article  Google Scholar 

  34. Fiorentino A, Pandit D, Gilbert KA, Misra M, Dios R, Venanzi CA (2006) Singular valued decomposition of torsional angles of GBR 12909 analogs. J Comput Chem 27:609–620

    Article  CAS  Google Scholar 

  35. Lowe JP (1968) Barriers to internal rotation about single bonds. Prog Phys Org Chem 6:1–80

    Article  CAS  Google Scholar 

  36. Kim DI, Deutsch HM, Ye X, Schweri MM (2007) Synthesis and pharmacology of site-specific cocaine abuse treatment agents: restricted rotation analogues of methylphenidate. J Med Chem 50:2718–2731

    Article  CAS  Google Scholar 

  37. Gilbert KM, Venanzi CA (2006) Hierarchical clustering analysis of flexible GBR 12909 dialkyl piperazine and piperidine analogs. J Comput Aided Mol Des 20:209–225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant DA018153 to C.A.V. from the National Institutes of Health (NIH). K.M.G. acknowledges the support of Ruth L. Kirschstein National Research Service Award Individual Predoctoral Fellowship DA015555 from NIH. The authors would like to thank Jeelum Naik, Eun Kim, and Anuj Kumar for assistance with some aspects of the calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Venanzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1738 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandit, D., Roosma, W., Misra, M. et al. Conformational analysis of piperazine and piperidine analogs of GBR 12909: stochastic approach to evaluating the effects of force fields and solvent. J Mol Model 17, 181–200 (2011). https://doi.org/10.1007/s00894-010-0712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0712-x

Keywords

Navigation