Journal of Molecular Modeling

, Volume 17, Issue 1, pp 201–208 | Cite as

Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields

  • Paolo ToscoEmail author
  • Thomas Balle
Software Report


Open3DQSAR is a freely available open-source program aimed at chemometric analysis of molecular interaction fields. MIFs can be imported from different sources (GRID, CoMFA/CoMSIA, quantum-mechanical electrostatic potential or electron density grids) or generated by Open3DQSAR itself. Much focus has been put on automation through the implementation of a scriptable interface, as well as on high computational performance achieved by algorithm parallelization. Flexibility and interoperability with existing molecular modeling software make Open3DQSAR a powerful tool in pharmacophore assessment and ligand-based drug design.


Open3DQSAR’s logo displaying PLS coefficient isocontours


Chemometrics Molecular interaction fields PLS 3D-QSAR Variable selection 



Open3DQSAR would never have seen the light of day without the invaluable pioneering work of Prof. Gabriele Cruciani and colleagues in the field of chemometrics applied to MIFs. We have referred to their detailed published methodologies [14, 17, 19, 20] to code Open3DQSAR’s implementation of the Smart Region Definition and Fractional Factorial Design algorithms, a task which would have been extremely hard in the absence of such outstanding guidance. We are also indebted to the authors of the progressive scrambling, UVE-PLS and IVE-PLS methodologies, as well as to the authors of their later extensions [16, 21-23]. We gratefully acknowledge the ShareGrid management team for the computing power provided through the ShareGrid distributed platform. Finally, P.T. thanks Prof. Alberto Gasco and Prof. Roberta Fruttero (Università degli Studi di Torino) for their warm support and encouragement throughout the development. Part of the work was carried out by P. T. at the University of Copenhagen under a visiting scientist grant from the Drug Research Academy. T.B. was supported by grants from the Carlsberg Foundation and the Lundbeck Foundation.

Supplementary material

894_2010_684_MOESM1_ESM.rtf (14 kb)
ESM 1 (RTF 13 kb)
894_2010_684_MOESM2_ESM.rtf (140 kb)
ESM 2 (RTF 139 kb)


  1. 1.
    GRID version 22C (2004) Molecular Discovery Ltd., Oxford, England; Accessed 24 December 2009
  2. 2.
    GOLPE 4.5 (1999) Multivariate Infometric Analysis S.r.l., Perugia, Italy; Accessed 24 December 2009
  3. 3.
    Cramer RD III, Wold S (1988) Comparative Molecular Field Analysis (CoMFA). Appl. No. 237,491, filed Aug. 26, 1988Google Scholar
  4. 4.
    SYBYL 7.3 (2009) Tripos International, St. Louis, MO, 63144, USA; Accessed 24 December 2009
  5. 5.
    Phase version 3.1 (2009) Schrödinger, LLC, New York, NY; Accessed 24 December 2009
  6. 6.
    Tosco P, Balle T (2009) Open3DQSAR: a new open-source pharmacophore explorer based on chemometric analysis of molecular interaction fields. Proceedings of “Model(l)ing´09”, 6-11 September 2009, Erlangen, Germany; Accessed 24 December 2009
  7. 7.
    Tosco P, Ahring PK, Dyhring T, Peters D, Harpsøe K, Liljefors T, Balle T (2009) Complementary three-dimensional quantitative structure−activity relationship modeling of binding affinity and functional potency: a study on α 4 β 2 nicotinic ligands. J Med Chem 52:2311–2316. doi: 10.1021/jm801060h CrossRefGoogle Scholar
  8. 8.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. doi: 10.1002/jcc.540141112 CrossRefGoogle Scholar
  9. 9.
    Gaussian 03, revision C.02 (2004) Wallingford, CT, USA; Accessed 24 December 2009
  10. 10.
    Jaguar version 7.6 (2009) Schrödinger, LLC, New York, NY, USA; Accessed 24 December 2009
  11. 11.
    Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput-Aided Mol Des 14:123–134. doi: 10.1023/A:1008193805436 CrossRefGoogle Scholar
  12. 12.
    TURBOMOLE V6.0 (2009) a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; Accessed 24 December 2009
  13. 13.
    Wang JM, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074. doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F CrossRefGoogle Scholar
  14. 14.
    Kastenholz MA, Pastor M, Cruciani G, Haaksma EEJ, Fox T (2000) GRID/CPCA: a new computational tool to design selective ligands. J Med Chem 43:3033–3044. doi: 10.1021/jm000934y CrossRefGoogle Scholar
  15. 15.
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometrics Intell Lab Syst 58:109–130. doi: 10.1016/S0169-7439(01)00155-1 CrossRefGoogle Scholar
  16. 16.
    Clark RD, Fox PC (2004) Statistical variation in progressive scrambling. J Comput-Aided Mol Des 18:563–576. doi: 10.1007/s10822-004-4077-z CrossRefGoogle Scholar
  17. 17.
    Baroni M, Costantino G, Cruciani G, Riganelli D, Valigi R, Clementi S (1993) Generating Optimal Linear PLS Estimations (GOLPE): an advanced chemometric tool for handling 3D-QSAR problems. Quant Struct-Act Relat 12:9–20. doi: 10.1002/qsar.19930120103 CrossRefGoogle Scholar
  18. 18.
    De Aguiar PF, Bourguignon B, Khots MS, Massart DL, Phan-Than-Luu R (1995) D-optimal designs. Chemometrics Intell Lab Syst 30:199–210. doi: 10.1016/0169-7439(94)00076-X CrossRefGoogle Scholar
  19. 19.
    Pastor M, Cruciani G, Clementi S (1997) Smart Region Definition: a new way to improve the predictive ability and interpretability of three-dimensional quantitative structure−activity relationships. J Med Chem 40:1455–1464. doi: 10.1021/jm9608016 CrossRefGoogle Scholar
  20. 20.
    Baroni M, Clementi S, Cruciani G, Costantino G, Riganelli D (1992) Predictive ability of regression models. Part II: selection of the best predictive PLS model. J Chemometr 6:347–356. doi: 10.1002/cem.1180060605 CrossRefGoogle Scholar
  21. 21.
    Centner V, Massart DL, de Noord OE, de Jong S, Vandeginste BM, Sterna C (1996) Elimination of uninformative variables for multivariate calibration. Anal Chem 68:3851–3858. doi: 10.1021/ac960321m CrossRefGoogle Scholar
  22. 22.
    Gieleciak R, Polanski J (2007) Modeling robust QSAR. 2. Iterative variable elimination schemes for CoMSA: application for modeling benzoic acid pK a values. J Chem Inf Model 47:547–556. doi: 10.1021/ci600295z CrossRefGoogle Scholar
  23. 23.
    Grohmann R, Schindler T (2008) Toward robust QSPR models: synergistic utilization of robust regression and variable elimination. J Comput Chem 29:847–860. doi: 10.1002/jcc.20831 CrossRefGoogle Scholar
  24. 24.
    Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  25. 25.
    Whaley RC, Petitet A (2005) Minimizing development and maintenance costs in supporting persistently optimized BLAS. Softw-Pract Exp 35:101–121. doi: 10.1002/spe.626 CrossRefGoogle Scholar
  26. 26.
    Anglano C, Canonico M, Guazzone M, Botta M, Rabellino S, Arena S, Girardi G (2008). Peer-to-peer desktop grids in the real world: the ShareGrid project. Proceedings of the 8th IEEE International Symposium on Cluster Computing and the Grid (CCGRID'08), Lyon (France), May 2008, IEEE Press. doi: 10.1109/CCGRID.2008.23
  27. 27.
    Lekien F, Marsden J (2005) Tricubic interpolation in three dimensions. Int J Numer Methods Eng 63:455–471. doi: 10.1002/nme.1296 CrossRefGoogle Scholar
  28. 28.
    Brown B, Lovato J, Russell K (2006) DCDFLIB;∼burkardt/f_src/dcdflib/dcdflib.html. Accessed 24 December 2009
  29. 29.
    Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8:3–30. doi: 10.1145/272991.272995 CrossRefGoogle Scholar
  30. 30.
    Stewart DE, Leyk Z (1994) Meschach Library version 1.2b;∼dstewart/meschach/. Accessed 24 December 2009
  31. 31.
    PyMOL (2009) DeLano Scientific LLC, Palo Alto, CA, USA; Accessed 24 December 2009
  32. 32.
    MOE version 2009.10 (2009) Chemical Computing Group Inc, Montreal, Quebec, Canada; Accessed 24 December 2009
  33. 33.
    Maestro version 9.0 (2009) Schrödinger LLC, New York, NY, USA; Accessed 24 December 2009
  34. 34.
    Gnuplot version 4.2 (2009); Accessed 24 December 2009
  35. 35.
    Cross S, Cruciani G (2009) Molecular fields in drug discovery: getting old or reaching maturity? Drug Disc Today. doi: 10.1016/j.drudis.2008.12.006 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Drug ScienceUniversity of TorinoTorinoItaly
  2. 2.Department of Medicinal Chemistry, The Faculty of Pharmaceutical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations