Skip to main content
Log in

Investigation on the micro-mechanisms of Al3+ interfering the reactivities of aspartic acid and its biological processes with Mg2+

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) has been applied to study the micro-mechanisms of Al3+ interfering the reactivities of aspartic acid (H2asp) and its biological processes with Mg2+. All the 46 stable conformers of Hasp- and 3 of asp2− have been determined at the B3LYP/6-311++G** level, showing that the 7 most stable conformers of Hasp all present a very strong and linear O–H···O H-bond between carboxyl and carboxylic acid groups with the bond energy high up to 162 kJ mol−1. The reaction thermodynamics and micro-mechanism between Al3+ and Hasp (or asp2−) in aqueous phase have been investigated by the combined application of supramolecular model and polarizable continuum IEFPCM solvent model, firstly revealing Al3+ interfering in the biological processes of aspartic acid. The substitution thermodynamics and mechanisms of Mg2+ by Al3+ in the biological processes between the species of aspartic acid and Mg2+ in aqueous phase were probed, revealing the facile displacement of Mg2+ by Al3+. These results may provide a reasonable mechanism of Al3+ biological toxicity at the microscopic level.

The coordinations of Al3+ and the species of aspartic acid (H2asp), and the substitution thermodynamics of Mg2+ by Al3+ in the biological processes between the species of aspartic acid and Mg2+ in aqueous phase were probed by density functional theory, providing a reasonable mechanism of Al3+ biological toxicity at the micro-scopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomas WS (2001) Coord Chem Rev 665:219–221. doi:10.1016/S0010-8545(01)0362-9

    Google Scholar 

  2. Martin RB (1994) Acc Chem Res 27:204–210. doi:10.1021/ar00043a004

    Article  CAS  Google Scholar 

  3. Mercero JM, Fowler JE, Ugalde JM (1998) J Phys Chem A 102:7006–7012. doi:10.1021/jp981146b

    Article  CAS  Google Scholar 

  4. Mercero JM, Fowler JE, Ugalde JM (2000) J Phys Chem A 104:7053–7060. doi:10.1021/jp992415g

    Article  CAS  Google Scholar 

  5. Mercero JM, Matxain JM, Rezabal E, Lopez X, Ugalde JM (2004) Int J Quantum Chem 98:409–424. doi:10.1002/qua.20075

    Article  CAS  Google Scholar 

  6. Flaig R, Koritsanszky T, Zobel D, Luger P (1998) J Am Chem Soc 120:2227–2238. doi:10.1021/ja972620e

    Article  CAS  Google Scholar 

  7. Noszál B, Sándor P (1989) Anal Chem 61:2631–2637. doi:10.1021/ac00198a009

    Article  Google Scholar 

  8. Edsall JT, Blanchard MH (1933) J Am Chem Soc 55:2337–2353. doi:10.1021/ja01333a019

    Article  CAS  Google Scholar 

  9. Noszál B (1986) J Phys Chem 90:6345–6349. doi:10.1021/j100281a056

    Article  Google Scholar 

  10. Sang-aroon W, Ruangpornvisuti V (2008) J Mol Graphics Modell 26:982–990. doi:10.1016/ j.jmgm.2007.08.004

    Article  CAS  Google Scholar 

  11. Sang-aroon W, Ruangpornvisuti V (2007) J Mol Graphics Modell 26:342–351. doi:10.1016/j.jmgm.2007.01.001

    Article  CAS  Google Scholar 

  12. Láng A, Füzéry AK, Beke T, Hudáky P, Perczel A (2004) J Mol Struct THEOCHEM 675:163–175. doi:10.1016/j.theochem.2003.12.047

    Article  Google Scholar 

  13. Siodłak D, Broda MA, Rzeszotarska B (2004) J Mol Struct THEOCHEM 668:75–85. doi:10.1016/j.theochem.2003.10.018

    Article  Google Scholar 

  14. Masman MF, Amaya MG, Rodríguez AM, Suvire FD, Chasse GA, Farkas O, Perczel A, Enriz RD (2001) J Mol Struct THEOCHEM 543:203–222. doi:10.1016/S0166-1280(01)00353-0

    Article  CAS  Google Scholar 

  15. Lubin MI, Bylaska EJ, Weare JH (2000) Chem Phys Lett 322:447–453. doi:10.1016/S0009-2614(00)00434-6

    Article  CAS  Google Scholar 

  16. Tarditi M, Klipfel MW, Rodriguez AM, Suvire FD, Chasse GA, Farkas O, Perczel A, Enriz RD (2001) J Mol Struct THEOCHEM 545:29–47. doi:10.1016/ S0166-1280(01)00352-9

    Article  CAS  Google Scholar 

  17. Barroso MN, Cerutti ES, Rodríguez AM, Jáuregui EA, Farkas O, Perczel A, Enriz RD (2001) J Mol Struct THEOCHEM 548:21–37. doi:10.1016/S0166-1280(01)00355-4

    Article  CAS  Google Scholar 

  18. Chakrabarti P, Pal D (2001) Prog Biophys Mol Biol 76:1–102

    Article  CAS  Google Scholar 

  19. IUPAC-IUB Comm on Biochem Nomenclature (1970) Biochemistry 9:3471–3479

    Article  Google Scholar 

  20. Sang-aroon W, Ruangpornvisuti V (2006) J Mol Struct THEOCHEM 758:181–187. doi:10.1016/j.theochem.2005.10.036

    Article  CAS  Google Scholar 

  21. Becke AD (1988) Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JAJr, Stratmann RE, Burant C, Dapprich S, Millam JM, Daniels JD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Rega N, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, Revision A.11.2. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  24. Mennucci B, Cancès E, Tomasi J (1997) J Phys Chem B 101:10506–10517. doi:10.1021/jp971959k

    Article  CAS  Google Scholar 

  25. Rezabal E, Mercero JM, Lopez X, Ugalde JM (2006) J Inorg Biochem 100:374–384. doi:10.1016/j.jinorgbio.2005.12.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Fen Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material available

(DOC 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J.F., He, L.J., Liu, J. et al. Investigation on the micro-mechanisms of Al3+ interfering the reactivities of aspartic acid and its biological processes with Mg2+ . J Mol Model 16, 1639–1650 (2010). https://doi.org/10.1007/s00894-010-0676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0676-x

Keywords

Navigation