Skip to main content

Advertisement

Log in

In silico binding characteristics between human histamine H1 receptor and antagonists

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

It is widely acknowledged that the H1 receptor antagonists have important therapeutic significance in the treatment of various allergic disorders, but little was known about the binding mode between the receptor and antagonists since the crystal structure of G-protein coupling receptors (GPCRs) were hard to obtain. In this paper, a theoretical three-dimensional model of human histamine H1 receptor (HHR1) was developed on the basis of recently reported high resolution structures of human A2A adenosine receptor, human β2-adrenoceptor and turkey β1-adrenoceptor. Furthermore, three representative H1 receptor antagonists were chosen for docking studies. Subsequently, a qualitative pharmacophore model was developed by Hiphop algorithm based on the docking conformations of these three antagonists. In this paper, active environment, certain key residues, and the corresponding pharmacophore features of H1 receptor were identified by such combinations of receptor-based and ligand-based approaches, which would give sufficient guidance for the rational design of novel antihistamine agents.

Active environment, certain key residues and the corresponding pharmacophore features of H1 receptor were identified by such a combination of receptor-based and ligand-based approaches, which would give sufficient guidance for the rational design of novel antihistamine agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hill SJ (1990) Pharmacol Rev 42:45–83

    CAS  Google Scholar 

  2. Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL (1997) Pharmacol Rev 49:253–278

    CAS  Google Scholar 

  3. Fukui H, Fujimoto K, Mizuguchi H, Sakamoto K, Horio Y, Takai S, Yamada K, Ito S (1994) Biochem Biophys Res Commun 201:894–901

    Article  CAS  Google Scholar 

  4. Gantz I, Schaffer M, DelValle J, Logsdon C, Campbell V, Uhler M, Yamada T (1991) Proc Natl Acad Sci USA 88:429–433

    Article  CAS  Google Scholar 

  5. Lovenberg TW, Roland BL, Wilson SJ, Jiang X, Pyati J, Huvar A, Jackson MR, Erlander MG (1999) Mol Pharmacol 55:1101–1107

    CAS  Google Scholar 

  6. Zhu Y, Michalovich D, Wu H, Tan KB, Dytko GM, Mannan IJ, Boyce R, Alston J, Tierney LA, Li X, Herrity NC, Vawter L, Sarau HM, Ames RS, Davenport CM, Hieble JP, Wilson S, Bergsma DJ, Fitzgerald LR (2001) Mol Pharmacol 59:434–441

    CAS  Google Scholar 

  7. Ohta K, Hayashi H, Mizuguchi H, Kagamiyama H, Fujimoto K, Fukui H (1994) Biochem Biophys Res Commun 203:1096–1101

    Article  CAS  Google Scholar 

  8. Nonaka H, Otaki S, Ohshima E, Kono M, Kase H, Ohta K, Fukui H, Ichimura M (1998) Eur J Pharmacol 345:111–117

    Article  CAS  Google Scholar 

  9. Wieland K, Laak AM, Smit MJ, Kuhne R, Timmerman H, Leurs R (1999) J Biol Chem 274:29994–30000

    Article  CAS  Google Scholar 

  10. Gillard M, Van Der Perren C, Moguilevsky N, Massingham R, Chatelain P (2002) Mol Pharmacol 61:391–399

    Article  CAS  Google Scholar 

  11. Leurs R, Smit MJ, Timmerman H (1995) Pharmacol Ther 66:413–463

    Article  CAS  Google Scholar 

  12. Delgado LF, Pferferman A, Sole D, Naspitz CK (1998) Ann Allergy Asthma Immunol 80:333–337

    Article  CAS  Google Scholar 

  13. Ter Laak AM, Timmerman H, Leurs R, Nederkoorn PH, Smit MJ, Donne-Op den Kelder GM (1995) J Comput Aided Mol Des 9:319–330

    Article  Google Scholar 

  14. Kiss R, Kovari Z, Keseru GM (2004) Eur J Med Chem 39:959–967

    Article  CAS  Google Scholar 

  15. Bruysters M, Jongejan A, Akdemir A, Bakker RA, Leurs R (2005) J Biol Chem 280:34741–34746

    Article  CAS  Google Scholar 

  16. Strasser A, Wittmann HJ (2007) J Comput Aided Mol Des 21:499–509

    Article  CAS  Google Scholar 

  17. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739–745

    Article  CAS  Google Scholar 

  18. Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE (2001) Biochemistry 40:7761–7772

    Article  CAS  Google Scholar 

  19. Yeagle PL, Choi G, Albert AD (2001) Biochemistry 40:11932–11937

    Article  CAS  Google Scholar 

  20. Du LP, Li MY, Tsai KC, You QD, Xia L (2005) Biochem Biophys Res Commun 332:677–687

    Article  CAS  Google Scholar 

  21. Yang Q, Du L, Wang X, Li M, You Q (2008) J Mol Graph Model 27:178–187

    Article  CAS  Google Scholar 

  22. Du L, Li M, You Q, Xia L (2007) Biochem Biophys Res Commun 355:889–894

    Article  CAS  Google Scholar 

  23. Li M, Fang H, Du L, Xia L, Wang B (2008) J Mol Model 14:957–966

    Article  CAS  Google Scholar 

  24. Yang Q, Du L, Tsai K-C, Wang X, Li M, You Q (2009) QSAR Comb Sci 28:59–71

    Article  CAS  Google Scholar 

  25. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) Science 322:1211–1217

    Article  CAS  Google Scholar 

  26. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Nature 450:383–387

    Article  CAS  Google Scholar 

  27. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Nature 454:486–491

    Article  CAS  Google Scholar 

  28. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) Nature 459:356–363

    Article  CAS  Google Scholar 

  29. Mobarec JC, Sanchez R, Filizola M (2009) J Med Chem 52:5207–5216

    Article  CAS  Google Scholar 

  30. Notredame C, Higgins DG, Heringa J (2000) J Mol Biol 302:205–217

    Article  CAS  Google Scholar 

  31. Gouet P, Robert X, Courcelle E (2003) Nucleic Acids Res 31:3320–3323

    Article  CAS  Google Scholar 

  32. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  33. Im W, Feig M, Brooks CL 3rd (2003) Biophys J 85:2900–2918

    Article  CAS  Google Scholar 

  34. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  35. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  36. Jo S, Kim T, Iyer VG, Im W (2008) J Comput Chem 29:1859–1865

    Article  CAS  Google Scholar 

  37. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  38. Kleywegt GJ (2000) Acta Crystallogr D Biol Crystallogr 56:249–265

    Article  CAS  Google Scholar 

  39. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) J Biomol NMR 8:477–486

    Article  CAS  Google Scholar 

  40. Colovos C, Yeates TO (1993) Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  41. Eisenberg D, Luthy R, Bowie JU (1997) Methods Enzymol 277:396–404

    Article  CAS  Google Scholar 

  42. Vriend G, Sander C (1993) J Appl Crystallogr 26:47–60

    Article  CAS  Google Scholar 

  43. Tomii K, Hirokawa T, Motono C (2005) Proteins 7(61 Suppl):114–121

    Article  CAS  Google Scholar 

  44. Shen MY, Sali A (2006) Protein Sci 15:2507–2524

    Article  CAS  Google Scholar 

  45. Stewart JJ (1990) J Comput Aided Mol Des 4:1–105

    Article  Google Scholar 

  46. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21:132–146

    Article  CAS  Google Scholar 

  47. Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23:1623–1641

    Article  CAS  Google Scholar 

  48. Tsai K-C, Wang S-H, Hsiao N-W, Li M, Wang B (2008) Bioorg Med Chem Lett 18:3509–3512

    Article  CAS  Google Scholar 

  49. OpenEye Scientific Software, Inc: Santa Fe, NM, 2007; pp. Quality Atomic Charges, Proton Assignment and Canonicalization

  50. Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC (2006) J Comput Aided Mol Des 20:601–619

    Article  CAS  Google Scholar 

  51. McDonald IK, Thornton JM (1994) J Mol Biol 238:777–793

    Article  CAS  Google Scholar 

  52. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127–134

    Article  CAS  Google Scholar 

  53. DeLano WL, DeLano (2006) Scientific, San Carlos, CA, USA. http://www.pymol.org

  54. Clement OO, Mehl AT (2000) HipHop: pharmacophores based on multiple common-feature alignments. In: Pharmacophore perception, development & use in drug design, International University Line, pp 69–84

  55. Barnum D, Greene J, Smellie A, Sprague P (1996) J Chem Inf Comput Sci 36:563–571

    CAS  Google Scholar 

  56. Rayan A (2010) J Mol Model 16:183–191

    Google Scholar 

  57. Mehler EL, Periole X, Hassan SA, Weinstein H (2002) J Comput Aided Mol Des 16:841–853

    Article  CAS  Google Scholar 

  58. Anthes JC, Gilchrest H, Richard C, Eckel S, Hesk D, West RE Jr, Williams SM, Greenfeder S, Billah M, Kreutner W, Egan RE (2002) Eur J Pharmacol 449:229–237

    Article  CAS  Google Scholar 

  59. Ghoneim OM, Legere JA, Golbraikh A, Tropsha A, Booth RG (2006) Bioorg Med Chem 14:6640–6658

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minyong Li or Qidong You.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Tables S1-2

For pharmacophore external validation (DOC 463 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yang, Q., Li, M. et al. In silico binding characteristics between human histamine H1 receptor and antagonists. J Mol Model 16, 1529–1537 (2010). https://doi.org/10.1007/s00894-010-0666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0666-z

Keywords

Navigation