Skip to main content

Advertisement

Log in

Molecular modeling study of isoindolines as L-type Ca2+ channel blockers by docking calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Two series of isoindolines 1(ag) and 2(ag) were found by docking calculations to be possible L-type Ca2+ channel (LCC) blockers. The theoretical 3-D model of the outer vestibule and the selective filter of the LCC was provided by Professor Lipkind; this model consists of transmembrane segments S5 and S6 and P-loops contributed by each of four repeats (I, II, III, and IV) of Cav 1.2. Therefore, two well-known LCC blockers, nifedipine 3 and (R)-ethosuccinimide 4 were also evaluated, and their binding sites on the LCC were identified and compared with those obtained for 1(ag) and 2(ag). Analysis of the results shows that the target compounds tested probably could be LCC blockers, since they interact with or near the glutamic acid residues Glu393, Glu736, Glu1145 and Glu1446 (the EEEE locus), which belong to the LCC selectivity region. The ∆G values for all of the Ca2+ channel ligands are between−10.78 and −3.67 (kcal mol−1), showing that LCC-1b, -1e and -1f complexes are more stable than the other compounds tested. Therefore, theoretically calculated dissociation constants K d (µM) were obtained for all compounds. Comparing these values reveals that compounds 1b (0.0244 μM), 1e (0.0176 μM) and 1f (0.0125 μM) exhibit more affinity for the LCC than the other compounds. This screening shows that the two series of isoindolines probably could act as LCC blockers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bootman MD, Collins TJ, Peppiat CM, Prothero IS, Mackenzie I, de Smet P, Travers M, Tovey SC, Seo IT, Berridge MJ, Ciccolini F, Lipp P (2001) Calcium signaling—an overview. Semin Cell Dev Biol 12:3–10

    Google Scholar 

  2. Gavernet L, Talevi A, Castro EA, Blanch B (2008) A combined virtual screening 2D and 3D QSAR methodology for the selection of new anticonvulsat candidates from a natural product library. QSAR Comb Sci 27:1120–1129

    Article  CAS  Google Scholar 

  3. Carvalho CAM, Coutinho OP, Carbalho AP (1986) Effects of Ca2+ channel blockers on Ca2+ translocation across synaptosomal membranes. J Neurochem 47:1774–1784

    Google Scholar 

  4. Feoktistov IA, Baldenkov GN, Barannik IV, Chervyakov EB, Larionov NP (1990) Interaction of calcium agonists and antagonists with calcium-binding proteins and their effects on cyclic nucleotide phosphodiesterase. Biokhimiya 55:754–759

    CAS  Google Scholar 

  5. Schleifer KJ (1999) Stereoselective characterization of the 1,4-dihydropyridine binding site at L-type calcium channels in the resting state and the opened/inactivated state. J Med Chem 42:2204–2211

    Google Scholar 

  6. Cosconati S, Marinelli L, Lavechia A, Novellino E (2007) Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: Model construction and docking calculations. J Med Chem 50:1504–1513

    Google Scholar 

  7. Tikhonov DB, Zhorov BS (2008) Molecular modeling of benzothiazepine binding in the L-type calcium channel. J Biol Chem 283:17594–17604

    Article  CAS  Google Scholar 

  8. Berger D, Citarella R, Dutia M, Grenberger L, Hallet W, Poweel D (1999) Novel multidrug resistance reversal agents. J Med Chem 42:2145–2161

    Article  CAS  Google Scholar 

  9. Carney WJR, de Stevens G (1971) Ger Offen 2,034,240(CI.C07d), 28 Jan 1971, US Appl 18 Jul 1969–25 May 1970. Chem Abstr 74:125471

  10. Schuhmann A, Tonjes H, Schmidt J (1965) Brit 989,917 (C1.C0 7d), 22 April 1965, Appl 15 May 1963. Chem Abstr 63:4261e

  11. Cignarella G, Sanna P (1981) Diuretic agents related to indapamide. 1. Synthesis and activity of 1-substituted 2-(4-chloro-3-sulfamoylbenzamido)isoindolines. J Med Chem 24:1003–1010

    Article  CAS  Google Scholar 

  12. Sanna P, Cignarella G, Ananiaa V, Siri RMS, Desole MS (1985) Diuretic agents related to indapamide. II. Synthesis and pharmacological activity of 1-alkyl, 1-carboxyalkyl- and 1,3-dialkyl-substituted 2-(4-chloro-3-sulfamoylbenzamido)isoindolines. Farmaco Ed Sci 40:777–785

    Google Scholar 

  13. Heidenbluth K, Franke J, Helga F, Toenjes H, Schmidt J (1972) Isoindolylethanols for treating coronary vessel diseases. Fr M 7732 (CI. A 61K, C 07d), 9 Mar 1970, Appl 164, 252, 27 Aug 1968. Chem Abstr 77:114241z

  14. Chimenti F, Vomero S (1975) Synthesis of N-substituted isoindolines. Farmaco Ed Sci 30:884–890

    CAS  Google Scholar 

  15. Casagrande C, Galli A, Ferrini R, Miragoli G (1972) Synthesis of some isoindolines and 1,2,3,4-tetrahydroisoquinolines and their evaluation as alpha-adrenergic and adrenergic neuron blocking agents. Farmaco Ed Sci 27:445–470

    Google Scholar 

  16. Mancilla T, Carrillo L, Zamudio-Rivera LS, Beltrán HI, Farfán N (2001) Synthesis and characterization of new 2-substituted isoindoline derivatives of alpha-amino acids. Org Prep Proced Inter 33:341–349

    Article  CAS  Google Scholar 

  17. Mancilla T, Correa-Basurto J, Alavés Carbajal KS, Sánchez Escalante ETJ, Trujillo Ferrara J (2007) Theoretical study of isoindolines to identify them as cyclooxygenase-1 and -2 inhibitors by docking simulations. J Mex Chem Soc 51:96–102

    CAS  Google Scholar 

  18. Mancilla T, Talamás P, Díaz GJA, Correa-Basurto J, Alavés Carbajal KS, Valle Sandoval N, Trujillo Ferrara J (2008) Valoración experimental de dos series de isoindolinas como inhibidores de ciclooxigenasa-1 and ciclooxigenasa-2. In: 7th Pan American Regional Symp, Facultad de Farmacia de la UAEM, Cuernavaca, México, 8–12 Sept 2008 (results will be submitted for publishing in the near future)

  19. Lipkind MG, Fozzard HA (2001) Modeling of the outer vestibule and selectivity filter of the L-type Ca2+ channel. Biochemistry 40:6786–6794

    Google Scholar 

  20. MDL Information Systems, Inc. (2002) ISIS/Draw, v.2.3 and 2.5. MDL Information Systems, Inc. (now Symyx Technologies, Inc.), San Leandro

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Peterson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A. 9. Gaussian Inc., Pittsburgh

  22. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  23. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  24. Huber I, Wappl E, Herzog A, Mitterdorfer J, Glossmann H, Langer T, Striessnig J (2000) Conserved Ca2+-antagonist-binding properties and putative folding structure of a recombinant high-affinity dihydropyridine-binding domain. Biochem J 347:829–836

    Google Scholar 

  25. Hockermann GH, Johnson BD, Scheuer T, Catterall WA (1995) Molecular determinant of high-affinity phenylalkylamines block of L-type calcium channels. J Biol Chem 270:22119–22122

    Article  Google Scholar 

  26. Copeland RA (2000) Enzymes. In: A practical introduction to structure, mechanism, and data analysis, 2nd edn. Wiley-VCH, New York, pp 11–40

Download references

Acknowledgments

The authors thank Comisión de Operación y Fomento de Actividades Académicas, Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional, and also Consejo Nacional de Ciencia y Tecnología-México for their financial support of JCB (No. 62488) and TMP (No. 67489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Mancilla-Percino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancilla-Percino, T., Correa-Basurto, J., Trujillo-Ferrara, J. et al. Molecular modeling study of isoindolines as L-type Ca2+ channel blockers by docking calculations. J Mol Model 16, 1377–1382 (2010). https://doi.org/10.1007/s00894-010-0643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0643-6

Keywords