Journal of Molecular Modeling

, Volume 16, Issue 7, pp 1291–1306 | Cite as

Quantum chemical studies on the inhibition potentials of some Penicillin compounds for the corrosion of mild steel in 0.1 M HCl

  • Nnabuk Okon EddyEmail author
  • Eno E. Ebenso
Original Paper


Inhibitive and adsorption properties of Penicillin G, Amoxicillin and Penicillin V potassium were studied using gravimetric, gasometric and quantum chemical methods. The results obtained indicate that these compounds are good adsorption inhibitors for the corrosion of mild steel in HCl solution. The adsorption of the inhibitors on mild steel surface is spontaneous, exothermic and supports the mechanism of physical adsorption. From DFT results, the sites for nucleophilic attacks in the inhibitors are the carboxylic acid functional group while the sites for electrophilic attacks are in the phenyl ring. There was a strong correlation between theoretical and experimental inhibition efficiencies.


Response surface plot showing the variation of experimental inhibition efficiency with EHOMO and ELUMO (other variables held constant; ELUMO-HOMO=7.77e V, TE=- 3780 eV, EE=-30800 eV, C-C= 27500 eV, CosAr=348, CosVol=413, IP=8.75 eV and •=9.42 eV) obtained from PM6 model


Corrosion Inhibition Mild steel Quantum chemical studies 



Chemical potential


Density of electron




Global hardness


Energy gap

\( \Delta {\hbox{G}}_{_{\rm{ads}}}^0 \)

Free energy of adsorption


Dipole moment


Concentration of the inhibitor


Core core repulsion energy


Cosmo area


Cosmo volume


Corrosion rate of mild steel


Density functional theory


Activation energy


Electron affinity


Electronic energy of a molecule


Experimental inhibition efficiency


Energy of the highest occupied molecular orbital


Energy of the lowest unoccupied molecular orbital


Theoretical or calculated inhibition efficiency

E(N – 1)

Ground state energy of the system with N-1 electron


Ground state energy of the system with N electron


Ground state energies of the system with N+1 electrons


Fukui function for the nucleophile


Fukui function for the electrophile


Global softness for the nucleophile


Global softness for the electrophile


Ionization potential


Mulliken or Lowdin charge


Heat of adsorption


Quantitative structure activity relation


Gas constant


Global softness


Total energy of the molecule


Austin model 1


Parametric method number 3


Parametric method number 6


Recife model


Modified neglect of diatomic overlap



The authors are grateful to Dr. S. R. Stoyanov of the National Institute of Nanotechnology, Canada for his leading in the field of computational chemistry.


  1. 1.
    Eddy NO, Odoemelam SA, Odiongenyi AO (2009) J Electrochem 39:849–857CrossRefGoogle Scholar
  2. 2.
    Agrawal YK, Talati JD, Shah MD, Desai MN, Shah NK (2003) Corrosion Sci 46:633–651CrossRefGoogle Scholar
  3. 3.
    Eddy NO, Odoemelam SA, Odiongenyi AO (2009) Green Chem Lett Rev 2:111–119CrossRefGoogle Scholar
  4. 4.
    Ashassi-Sorkhabi H, Shaabani B, Seifzadeh D (2005) Electrochim Acta 50:3446–3452CrossRefGoogle Scholar
  5. 5.
    Eddy NO, Mamza PAP (2009) Portugal Electrochim Acta 27:443–456CrossRefGoogle Scholar
  6. 6.
    Shuka SK, Singh AK, Ahamad I, Quraishi MA (2009) Mat Lett 63:819–822CrossRefGoogle Scholar
  7. 7.
    Shukla SK, Quraishi MA (2009) Corros Sci 51:1007–1011CrossRefGoogle Scholar
  8. 8.
    Shukla SK, Quraish MA (2009) J Appl Electrochem 39:1517–1523CrossRefGoogle Scholar
  9. 9.
    Fouda AS, Mostafa HA, El Abbasy HM (2009) Corros Sci 51:485–492CrossRefGoogle Scholar
  10. 10.
    Achary G, Sachin HP, Naik YA, Venkatesha TV (2008) Mat Chem Phys 107:44–50CrossRefGoogle Scholar
  11. 11.
    El-Naggar MM (2007) Corros Sci 49:2226–2236CrossRefGoogle Scholar
  12. 12.
    Obot IB, Obi-Egbedi NO (2008) Colloids Surf A 330:207–212CrossRefGoogle Scholar
  13. 13.
    Morad MS (2008) Corros Sci 50:436–448CrossRefGoogle Scholar
  14. 14.
    Abdallah M (2002) Corros Sci 44:717–728CrossRefGoogle Scholar
  15. 15.
    Abdallah M (2004) Corros Sci 46:1981–1996CrossRefGoogle Scholar
  16. 16.
    Cruz J, Martínez R, Genesca J, Garc E (2004) J Electroanal Chem 566(1):111–121CrossRefGoogle Scholar
  17. 17.
    Khalil N (2003) Electrochim Acta 48(18):2635–2640CrossRefGoogle Scholar
  18. 18.
    Eddy NO, Odoemelam SA (2009) Pigment Resin Technol 38:111–115CrossRefGoogle Scholar
  19. 19.
    Odiongenyi AO, Odoemelam SA, Eddy NO (2009) Portugal Electrochim Acta 27:33–45CrossRefGoogle Scholar
  20. 20.
    Xia S, Qiu M, Yu L, Liu F (2008) Corros Sci 50:2021–2029CrossRefGoogle Scholar
  21. 21.
    Eddy NO, Ebenso EE, Ibok UJ (2009) J Appl Electrochem doi:  10.1007/s10800-009-0015z
  22. 22.
    Aytac A, Ozmen U, Kabasakaloglu M (2005) Mat Chem Phys 89:176–181CrossRefGoogle Scholar
  23. 23.
    Soror TY (2004) J Mater Sci Technol 20(4):463–466Google Scholar
  24. 24.
    Zhao P, Li Y, Liang Q (2005) Appl Surf Sci 252(5):1596–1607CrossRefGoogle Scholar
  25. 25.
    Sahin M, Gece G, Karci F, Bilgic SJ (2008) Appl Electrochem 38:809–815CrossRefGoogle Scholar
  26. 26.
    Odiongenyi AO, Odoemelam SA, Eddy NO (2009) Portugal Electrochim Acta 27:33–45CrossRefGoogle Scholar
  27. 27.
    Yurt A, Bereket G, Ogretir CJ (2005) Mol Struct 725:215–221Google Scholar
  28. 28.
    Achary G, Sachin HP, Naik YA, Venkatesha TV (2008) Mater Chem Phys 107:44–50CrossRefGoogle Scholar
  29. 29.
    Olivares-Xometl O, Likhanova NV (2008) Dom´ınguez-Aguilar MA, Arce E, Dorantes H, Arellanes-Lozada P. Mater Chem Phys 110:344–351CrossRefGoogle Scholar
  30. 30.
    Wang H, Wang X, Wang H, Wang L, Liu A (2007) J Mol Model 13:147–153CrossRefGoogle Scholar
  31. 31.
    Fang J, Lie J (2002) J Mol Struct (THEOCHEM) 593:179–185Google Scholar
  32. 32.
    Bentiss F, Bouanis M, Mernari B, Traisnel M, Vezin H, Lagrene’e M (2007) Appl Surf Sci 253:3696–3704CrossRefGoogle Scholar
  33. 33.
    Khaled KF (2008) Electrochim Acta 53:3484–3492CrossRefGoogle Scholar
  34. 34.
    Arslan T, Kandemirli F, Ebenso EE, Love I, Alemu H (2009) Corros Sci 51:35–47CrossRefGoogle Scholar
  35. 35.
    El Ashry HE, El Nemr A, Esawy SA, Ragab S (2006) Electrochim Acta 51:3957–3968CrossRefGoogle Scholar
  36. 36.
    Lukovitis L, Shaban A, Kalman E (2003) Rusian J Electrochem 19:177–202CrossRefGoogle Scholar
  37. 37.
    Bentiss F, Lebrini M, Lagren’ee M, Traisnel M, Elfarouk A, Vezin H (2007) Electrochim Acta 52:6865–6872CrossRefGoogle Scholar
  38. 38.
    Eddy NO, Ibok UJ, Ebenso EE, El Nemr A, El Ashry H (2009) J Mol Model 15:1085–1092CrossRefGoogle Scholar
  39. 39.
    Young DC (2004) Computational chemistry, a practical guide for applying techniques to real world problems. Wiley, New York, p 42Google Scholar
  40. 40.
    Lebrini M, Lagrenée M, Vezin H, Gengembre L, Bentiss F (2005) Corros Sci 47(2):485–505CrossRefGoogle Scholar
  41. 41.
    Gece G (2008) Corrosion Sci 50:2981–2992CrossRefGoogle Scholar
  42. 42.
    Stoyanov SR, Gusarov S, Kuznicki SM, Kovalenko A (2008) J Phys Chem C 112:6794–6810CrossRefGoogle Scholar
  43. 43.
    Stoyanov SR, Villegas JM, Rillema A (2003) Inorg Chem 42:7852–7860CrossRefGoogle Scholar
  44. 44.
    Gomez B, Likhanova NV, Dominguez MA, Martinez-Palou RA, Vela A, Gazquez JL (2006) Phys Chem B 110:8928–8934CrossRefGoogle Scholar
  45. 45.
    Rodriguez-Valdez LM, Vilamisar W, Casales M, Gonzalez-Rodriguez JG, Martinez-Villafane A, Martinez L, Glossman-Mitnik D (2006) Corros Sci 48:4053–4064CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of ChemistryAhmadu Bello UniversityZariaNigeria
  2. 2.Department of ChemistryNorth West University (Mafikeng Campus)MmabathoSouth Africa

Personalised recommendations