Skip to main content
Log in

Trm13p, the tRNA:Xm4 modification enzyme from Saccharomyces cerevisiae is a member of the Rossmann-fold MTase superfamily: prediction of structure and active site

  • Short Comments
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

2′-O-ribose methylation is one of the most common posttranscriptional modifications in RNA. Methylations at different positions are introduced by enzymes from at least two unrelated superfamilies. Recently, a new family of eukaryotic RNA methyltransferases (MTases) has been identified, and its representative from yeast (Yol125w, renamed as Trm13p) has been shown to 2′-O-methylate position 4 of tRNA. Trm13 is conserved in Eukaryota, but exhibits no sequence similarity to other known MTases. Here, I present the results of bioinformatics analysis which suggest that Trm13 is a strongly diverged member of the Rossmann-fold MTase (RFM) superfamily, and therefore is evolutionarily related to 2′-O-MTases such as Trm7 and fibrillarin. However, the character of conserved residues in the predicted active site of the Trm13 family suggests it may use a different mechanism of ribose methylation than its relatives. A molecular model of the Trm13p structure has been constructed and evaluated for potential accuracy using model quality assessment methods. The predicted structure will facilitate experimental analyses of the Trm13p mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

aa:

Amino acid(s)

e:

Expectation

MTase:

Methyltransferase

RFM:

Rossmann-fold MTase

SAM:

AdoMet, S-adenosyl-L-methionine

References

  1. Grosjean H (2005) Fine-tuning of RNA functions by modification and editing, vol 12. Springer, Berlin-Heidelberg

    Google Scholar 

  2. Dunin-Horkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H, Bujnicki JM (2006) MODOMICS: a database of RNA modification pathways. Nucleic Acids Res 34(Database issue):D145–D149. doi:10.1093/nar/gkj084

    Article  CAS  Google Scholar 

  3. Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC (1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72(3):443–457. doi:10.1016/0092-8674(93)90120-F

    Article  CAS  Google Scholar 

  4. Feder M, Pas J, Wyrwicz LS, Bujnicki JM (2003) Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2′-O-methyltransferases. Gene 302(1–2):129–138. doi:10.1016/S0378-1119(02)01097-1

    Article  CAS  Google Scholar 

  5. Pintard L, Lecointe F, Bujnicki JM, Bonnerot C, Grosjean H, Lapeyre B (2002) Trm7p catalyses the formation of two 2′-O-methylriboses in yeast tRNA anticodon loop. EMBO J 21(7):1811–1820. doi:10.1093/emboj/21.7.1811

    Article  CAS  Google Scholar 

  6. Pintard L, Bujnicki JM, Lapeyre B, Bonnerot C (2002) MRM2 encodes a novel yeast mitochondrial 21 S rRNA methyltransferase. EMBO J 21(5):1139–1147. doi:10.1093/emboj/21.5.1139

    Article  CAS  Google Scholar 

  7. Tkaczuk KL, Dunin-Horkawicz S, Purta E, Bujnicki JM (2007) Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. BMC Bioinformatics 8:73. doi:10.1186/1471-2105-8-73

    Article  Google Scholar 

  8. Cavaille J, Chetouani F, Bachellerie JP (1999) The yeast Saccharomyces cerevisiae YDL112w ORF encodes the putative 2′-O-ribose methyltransferase catalyzing the formation of Gm18 in tRNAs. RNA 5(1):66–81

    Article  CAS  Google Scholar 

  9. Lapeyre B, Purushothaman SK (2004) Spb1p-directed formation of Gm2922 in the ribosome catalytic center occurs at a late processing stage. Mol Cell 16:663–669. doi:10.1016/j.molcel.2004.10.022

    Article  CAS  Google Scholar 

  10. Clouet-d'Orval B, Gaspin C, Mougin A (2005) Two different mechanisms for tRNA ribose methylation in Archaea: a short survey. Biochimie 87:889–895. doi:10.1016/j.biochi.2005.02.004

    Article  Google Scholar 

  11. Purta E, van Vliet F, Tkaczuk KL, Dunin-Horkawicz S, Mori H, Droogmans L, Bujnicki JM (2006) The yfhQ gene of Escherichia coli encodes a tRNA:Cm32/Um32 methyltransferase. BMC Mol Biol 7:23. doi:10.1186/1471-2199-7-23

    Article  Google Scholar 

  12. Wilkinson ML, Crary SM, Jackman JE, Grayhack EJ, Phizicky EM (2007) The 2′-O-methyltransferase responsible for modification of yeast tRNA at position 4. RNA 13:404–413. doi:10.1261/rna.399607

    Article  CAS  Google Scholar 

  13. Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329–335. doi:10.1016/S0968-0004(03)00090-2

    Article  CAS  Google Scholar 

  14. Kozbial PZ, Mushegian AR (2005) Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 5:19. doi:10.1186/1472-6807-5-19

    Article  Google Scholar 

  15. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  16. Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31:3305–3307. doi:10.1093/nar/gkg557

    Article  CAS  Google Scholar 

  17. Lundstrom J, Rychlewski L, Bujnicki J, Elofsson A (2001) Pcons: a neural-network-based consensus predictor that improves fold recognition. Protein Sci 10:2354–2362. doi:10.1110/ps.08501

    Article  CAS  Google Scholar 

  18. Kosinski J, Gajda MJ, Cymerman IA, Kurowski MA, Pawlowski M, Boniecki M, Obarska A, Papaj G, Sroczynska-Obuchowicz P, Tkaczuk KL et al (2005) FRankenstein becomes a cyborg: the automatic recombination and realignment of fold recognition models in CASP6. Proteins 61(Suppl 7):106–113. doi:10.1002/prot.20726

    Article  CAS  Google Scholar 

  19. Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268(1):209–225. doi:0022-2836/97/160209-17 $25.00/0/mb970959

    Article  CAS  Google Scholar 

  20. Tramontano A, Morea V (2003) Assessment of homology-based predictions in CASP5. Proteins 53(Suppl 6):352–368. doi:10.1002/prot.20187

    Article  CAS  Google Scholar 

  21. Wang G, Jin Y, Dunbrack RL Jr (2005) Assessment of fold recognition predictions in CASP6. Proteins 61(Suppl 7):46–66. doi:10.1002/prot.20721

    Article  CAS  Google Scholar 

  22. Bujnicki JM, Rychlewski L (2002) RNA:(guanine-N2) methyltransferases RsmC/RsmD and their homologs revisited-bioinformatic analysis and prediction of the active site based on the uncharacterized Mj0882 protein structure. BMC Bioinformatics 3(1):10. doi:10.1186/1471-2105-3-10

    Article  Google Scholar 

  23. Purta E, van Vliet F, Tricot C, De Bie LG, Feder M, Skowronek K, Droogmans L, Bujnicki JM (2005) Sequence-structure-function relationships of a tRNA (m(7)G46) methyltransferase studied by homology modeling and site-directed mutagenesis. Proteins 59(3):482–488. doi:10.1002/prot.20454

    Article  CAS  Google Scholar 

  24. Fabrega C, Hausmann S, Shen V, Shuman S, Lima CD (2004) Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell 13(1):77–89. doi:10.1016/S1097-2765(03)00522-7

    Article  CAS  Google Scholar 

  25. Sunita S, Purta E, Durawa M, Tkaczuk KL, Swaathi J, Bujnicki JM, Sivaraman J (2007) Functional specialization of domains tandemly duplicated within 16 S rRNA methyltransferase RsmC. Nucleic Acids Res 35(13):4264–4274. doi:10.1093/nar/gkm411

    Article  CAS  Google Scholar 

  26. Zegers I, Gigot D, van Vliet F, Tricot C, Aymerich S, Bujnicki JM, Kosinski J, Droogmans L (2006) Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase. Nucleic Acids Res 34(6):1925–1934. doi:10.1093/nar/gkl116

    Article  CAS  Google Scholar 

  27. Bradley P, Malmstrom L, Qian B, Schonbrun J, Chivian D, Kim DE, Meiler J, Misura KM, Baker D (2005) Free modeling with Rosetta in CASP6. Proteins 61:128–134. doi:10.1002/prot.20729

    Article  CAS  Google Scholar 

  28. Wallner B, Elofsson A (2006) Identification of correct regions in protein models using structural, alignment, and consensus information. Protein Sci 15(4):900–913. doi:10.1110/ps.051799606

    Article  CAS  Google Scholar 

  29. Wallner B, Fang H, Elofsson A (2003) Automatic consensus-based fold recognition using Pcons, ProQ, and Pmodeller. Proteins 53(Suppl 6):534–541. doi:10.1002/prot.10536

    Article  CAS  Google Scholar 

  30. Pawlowski M, Gajda MJ, Matlak R, Bujnicki JM (2008) MetaMQAP: a meta-server for the quality assessment of protein models BMC. Bioinformatics 9:403. doi:10.1186/1471-2105-9-403

    Article  Google Scholar 

  31. Armon A, Graur D, Ben-Tal N (2001) ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J Mol Biol 307(1):447–463. doi:10.1006/jmbi.2001.4474

    Article  CAS  Google Scholar 

  32. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19(1):163–164. doi:10.1093/bioinformatics/19.1.163

    Article  CAS  Google Scholar 

  33. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037–10041. doi:10.1073/pnas.181342398

    Article  CAS  Google Scholar 

  34. DeLano WL (2002) The PyMol Molecular Graphics System. on World Wide Web http://www.pymol.org, DeLano Scientific, Palo Alto, CA, USA:1.

  35. Froimowitz M (1993) HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques 14(6):1010–1013

    CAS  Google Scholar 

  36. Hager J, Staker BL, Jakob U (2004) Substrate binding analysis of the 23 S rRNA methyltransferase RrmJ. J Bacteriol 186:6634–6642. doi:10.1128/JB.186.19.6634-6642.2004

    Article  CAS  Google Scholar 

  37. Kealey JT, Santi DV (1991) Identification of the catalytic nucleophile of tRNA (m5U54)methyltransferase. Biochemistry 30:9724–9728. doi:10.1021/bi00104a022

    Article  CAS  Google Scholar 

  38. Wu JC, Santi DV (1987) Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem 262(10):4778–4786

    CAS  Google Scholar 

  39. Liu Y, Santi DV (2000) m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts. PNAS 97(15):8263–8265

    Article  CAS  Google Scholar 

  40. Bujnicki JM, Feder M, Ayres CL, Redman KL (2004) Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases. Nucleic Acids Res 32:2453–2463. doi:10.1093/nar/gkh564

    Article  CAS  Google Scholar 

  41. Tkaczuk KL, Obarska A, Bujnicki JM (2006) Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis. BMC Evol Biol 6:6. doi:10.1186/1471-2148-6-100

    Article  Google Scholar 

  42. Andreeva A, Tidow H (2008) A novel CHHC Zn-finger domain found in spliceosomal proteins and tRNA modifying enzymes. Bioinformatics 24(20):2277–2280. doi:10.1093/bioinformatics/btn431

    Article  CAS  Google Scholar 

  43. O'Farrell HC, Scarsdale JN, Rife JP (2004) Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli. J Mol Biol 339(2):337–353. doi:10.1016/j.jmb.2004.02.068

    Article  Google Scholar 

  44. Zhou H, Zhou Y (2004) Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins 55(4):1005–1013. doi:10.1002/prot.20007

    Article  CAS  Google Scholar 

  45. Rychlewski L, Jaroszewski L, Li W, Godzik A (2000) Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci 9(2):232–241. doi::10.1110/ps.9.2.232

    CAS  Google Scholar 

  46. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–W248. doi:10.1093/nar/gki408

    Article  Google Scholar 

  47. Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C (1999) The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J Mol Biol 289(2):277–291. doi:10.1006/jmbi.1999.2788

    Article  CAS  Google Scholar 

  48. Fischer D (2003) 3D-SHOTGUN: a novel, cooperative, fold-recognition meta-predictor. Proteins 51(3):434–441. doi:10.1002/prot.10357

    Article  CAS  Google Scholar 

  49. Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299(2):499–520. doi:10.1006/jmbi.2000.3741

    Article  CAS  Google Scholar 

  50. Bussiere DE, Muchmore SW, Dealwis CG, Schluckebier G, Nienaber VL, Edalji RP, Walter KA, Ladror US, Holzman TF, Abad-Zapatero C (1998) Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37(20):7103–7112. doi:10.1021/bi973113c

    Article  CAS  Google Scholar 

  51. Jones DT (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287(4):797–815. doi:10.1006/jmbi.1999.2583

    Article  CAS  Google Scholar 

  52. Yu L, Petros AM, Schnuchel A, Zhong P, Severin JM, Walter K, Holzman TF, Fesik SW (1997) Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance. Nat Struct Biol 4(6):483–489. doi:10.1038/nsb0697-483

    Article  CAS  Google Scholar 

  53. Lim K, Zhang H, Tempczyk A, Bonander N, Toedt J, Howard A, Eisenstein E, Herzberg O (2001) Crystal structure of YecO from Haemophilus influenzae (HI0319) reveals a methyltransferase fold and a bound S-adenosylhomocysteine. Proteins 45(4):397–407. doi:10.1002/prot.10004

    Article  CAS  Google Scholar 

  54. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310(1):243–257. doi:10.1006/jmbi.2001.4762

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KLT was supported by two grants from the Polish Ministry of Science (grant number N301 2396 33 and doctoral grant number N301 105 32/3599) and the START fellowship from Foundation for Polish Science. KLT would like to thank Dr. Janusz M. Bujnicki for the discussions and comments concerning the presented material and this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina L. Tkaczuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkaczuk, K.L. Trm13p, the tRNA:Xm4 modification enzyme from Saccharomyces cerevisiae is a member of the Rossmann-fold MTase superfamily: prediction of structure and active site. J Mol Model 16, 599–606 (2010). https://doi.org/10.1007/s00894-009-0570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0570-6

Keywords

Navigation