Skip to main content
Log in

Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The relationship between structure and photo electrochemical property of ten natural pigments from plants, insects and microbes has been analyzed using density functional theory (DFT) at the B3LYP/6-31G(d) level. The essential parameters for their photoelectrochemical behaviour such as ground state geometries, electronic transition energies and oxidation potentials are computed. The attachment tendency of the anchoring groups, expressed as the deprotonation order, is determined by calculating the proton affinities at different sites of the molecules. A thorough analysis of the charge flow dynamics in the molecular orbitals (HOMO and LUMO) of these molecules has been carried out and presented to emphasize the role of these orbitals in effective charge separation, the important feature of photosensitizers for DSSC. This study highlights that the flexible spatial orientation provided by the bridging aliphatic unsaturation favours the oscillator strength and the hydroxyl anchor group attached to the ring of delocalized π electron cloud acts as the effective anchor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nazeeruddin MK, Kay A, Rodico J, Humphry Baker R, Muller E, Liska P, Vlachopoulos N, Gratzel M (1993) Conversion of light to electricity by cis-X2bis (2, 2′- bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN- and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390. doi:10.1021/ja00067a063

    Article  CAS  Google Scholar 

  2. Smestad G, Bignozzi C, Argazzi A (1994) Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Sol Energy Mater Sol Cells 32:259–272. doi:10.1016/0927-0248(94)90263-1

    Article  CAS  Google Scholar 

  3. Nazeeruddin MK, Pechy P, Gratzel M (1997) Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. J Chem Commun 1705-1706. doi:10.1039/a703277c

  4. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4:145–153. doi:10.1016/S1389-5567(03)00026-1

    Article  Google Scholar 

  5. Runge E, Gross EKU (1984) Density-Functional Theory for Time-Dependent Systems. Phys Rev Lett 52:997–1000. doi:10.1103/PhysRevLett.52.997

    Article  CAS  Google Scholar 

  6. Jacquemin D, Perpète EA, Ciofini I, Adamo C (2008) On the TD-DFT UV/vis spectra accuracy: the azoalkanes. Theor Chem Account 120:405–410. doi:10.1007/s00214-008-0424-9

    Article  CAS  Google Scholar 

  7. Hao S, Wu J, Huang Y, Lin J (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80:209–214. doi:10.1016/j.solener.2005.05.009

    Article  CAS  Google Scholar 

  8. Polo AS, Iha NY (2006) Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba. Sol Energy Mater Sol Cells 90:1936–1944. doi:10.1016/j.solmat.2006.02.006

    Article  CAS  Google Scholar 

  9. Garcia CG, Polo AS, Iha NY (2003) Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photo electrochemical solar cells. J Photochem Photobiol A 160:87–91. doi:10.1016/S1010-6030(03)00225-9

    Article  CAS  Google Scholar 

  10. Smestad GP (1998) Education and solar conversion: Demonstrating electron transfer. Sol Energy Mater Sol Cells 55:157–178. doi:10.1016/S0927-0248(98)00056-7

    Article  CAS  Google Scholar 

  11. Olea A, Ponce G, Sebastian PJ (1999) Electron transfer via organic dyes for solar conversion. Solar Energy Mater Sol Cells 59:137–143. doi:10.1016/S0927-0248(99)00038-0

    Article  CAS  Google Scholar 

  12. Cherpy NJ, Smestad GP, Gratzel M, Zhang JZ (1997) Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye- Sensitized TiO2 Nanocrystalline Electrode. J Phys Chem B 101:9342–9351. doi:10.1021/jp972197w

    Article  Google Scholar 

  13. Kumara GRA, Kanebo S, Okuya M, Onwona-Agyeman B, Konno A, Tennakone K (2006) Shiso leaf pigments for dye-sensitized solid-state solar cell. Solar Energy Mater Sol Cells 90:1220–1226. doi:10.1016/j.solmat.2005.07.007

    Article  CAS  Google Scholar 

  14. Garcia CG, Polo AS, Murakami Iha NY (2003) Photoelectrochemical solar cell using extract of Eugenia jambolana Lam as natural sensitizer. An Acad Bras Cienc 75:163–165

    Google Scholar 

  15. Tennakone K, Kumarasinghe AR, Kumara GRRA, Wijayantha KGU, Sirimanne M (1997) Nanoporous TiO2 photo anode sensitized with the flower pigment cyaniding. J Photochem Photobiol A: Chem 108:193–195. doi:10.1016/S1010-6030(97)00090-7

    Article  CAS  Google Scholar 

  16. Hedbor S, Klar L (2005) Plant Extract Sensitised Nanoporous Titanium Dioxide Thin Film Photoelectrochemical Cells. Dissertation, Uppsala University

  17. Yamazaki E, Murayama M, Nishikawa N, Hashimoto N, Shoyama M, Kurita O (2007) Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Sol Energy 81:512–516. doi:10.1016/j.solener.2006.08.003

    Article  CAS  Google Scholar 

  18. Wongcharee K, Meeyoo V, Chavadej S (2007) Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Mater Sol Cells 91:566–571. doi:10.1016/j.solmat.2006.11.005

    Article  CAS  Google Scholar 

  19. Starck D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochem 62:247–269. doi:10.1016/S0031-9422(02)00564-2

    Article  Google Scholar 

  20. Lai WH, Su YS, Teoh LG, Hon MH (2007) Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J Photochem Photobiol A: Chem 195:307–313. doi:10.1016/j.jphotochem.2007.10.018

    Article  Google Scholar 

  21. Calogero G, Marco GD (2008) Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Solar Energy Mater Sol Cells 92:1341–1346. doi:10.1016/j.solmat.2008.05.007

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  23. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  24. Ditchfield R, Hehre WJ, Pople JA (1971) Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J Chem Phys 54:724–728. doi:10.1063/1.1674902

    Article  CAS  Google Scholar 

  25. Carlos Bustos C, Christian Sánchez C, Rolando Martínez R, Ricardo Ugarte R, Eduardo Schott E, Carey DML, Garland MT, Espinoza L (2007) Tautomeric, spectroscopic, DFT calculations and ray studies on O2N-4-C6H4-NHN-C(COCH3)2. Dyes and Pigments 74:615–621. doi:10.1016/j.dyepig.2006.04.002

    Article  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant, JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz, JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, eng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Gaussian Inc, Pittsburgh, PA

  27. Reiss H, Heller A (1985) The absolute potential of the standard hydrogen electrode: a new estimate. J Phys Chem 89:4207–4213. doi:10.1021/j100266a013

    Article  CAS  Google Scholar 

  28. Cossi M, Iozzi MF, Marrani AG, Lavecchia T, Galloni P, Zanoni R, Decker F (2006) Measurement and DFT Calculation of Fe(cp) 2 Redox Potential in Molecular Monolayers Covalently Bound to H-Si(100). J Phys Chem B 110:22961–22965. doi:10.1021/jp064800t

    Article  CAS  Google Scholar 

  29. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  30. Harborne JB, Harborne AJ (1998) Phytochemical methods: a guide to modern techniques of plant analysis, 3rd edn. Springer, Berlin, pp. 53–54

  31. Lin FH, Lin JY, Gupta RD, Tournas JA, Burch JA, Selim MA, Monteiro-Riviere NA, Grichnik JM, Zielinski J, Pinnell SR (2005) Ferulic Acid Stabilizes a Solution of Vitamins C and E and Doubles its Photoprotection of Skin. J Investigative Dermatol 125:826–832. doi:10.1111/j.0022-202X.2005.23768.x

    Article  CAS  Google Scholar 

  32. Dixit R, Gold B (1986) Inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA methylation by ellagic acid. Proc Natl Acad Sci 83:8039–8043

    Article  CAS  Google Scholar 

  33. Balakina GG, Vasiliev VG, Karpova EV, Mamatyuk VI (2006) HPLC and molecular spectroscopic investigations of the red dye obtained from an ancient Pazyryk textile. Dyes and Pigments 71:54–60. doi:10.1016/j.dyepig.2005.06.014

    Article  CAS  Google Scholar 

  34. Robertson JG, Alok Kumar J, Mancewicz UA, Villafranca JJ (1989) Spectral Studies of Bovine Dopamine, & Hydroxylase. J Biol Chem 264:19916–19921

    CAS  Google Scholar 

  35. Polunin KE, Sokolova NP, Gorbunov AM, Bulgakova RA, Polunina IA (2007) FTIR Spectroscopic Studies of Interactions of Stilbenes with Silicon Dioxide. Protection of Metals 44:352–357

    Article  Google Scholar 

  36. Anjaneyulu ASR, Prakash CVS, Mallavadhani UV (1991) Two Caulerpin analogues and a sesquiterpene from caulerparacemosa. Phytochem 30:3041–3042

    Article  CAS  Google Scholar 

  37. Martel RR, Laws JH (1991) Purification and Propertieso f an Ommochrome-binding Protein from the Hemolymph of the Tobacco Hornworm, Manduca sexta. J Biol Chem 266:21392–21396

    CAS  Google Scholar 

  38. Ba´lint I, Dezso G, Gyemant I (2000) A perfectly N-representable two-particle density matrix for the electron correlation problem. THEOCHEM 501–502:125–131. doi:10.1016/S0166-1280(99)00421-2

    Article  Google Scholar 

  39. Qin C, Clark AE (2007) DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells. Chem Phys Lett 438:26–30. doi:10.1016/j.cplett.2007.02.063

    Article  CAS  Google Scholar 

  40. Liu Z (2008) Theoretical studies of natural pigments relevant to dye-sensitized solar cells. THEOCHEM 862:44–48. doi:10.1016/j.theochem.2008.04.022

    Article  CAS  Google Scholar 

  41. Duncan WR, Prezhdo OV (2006) Theoretical Studies of Photoinduced Electron Transfer in Dye-Sensitized TiO2. Ann Rev Phys Chem 58:143–184. doi:10.1146/annurev.physchem.58.052306.144054

    Article  Google Scholar 

  42. Padova PD, Lucci M, Olivieri B, Quaresima C, Priori S, Francini R, Grilli A, Hricovini K, Davoli I (2009) Natural hybrid organic_inorganic photovoltaic devices. Superlattices and Microstructures 45:555–563. doi:10.1016/j.spmi.2009.03.005

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. M. Chidambaram, Director, NITT, India, for creating the computational Chemistry Lab. facilities for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Cindrella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heera, T.R., Cindrella, L. Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers. J Mol Model 16, 523–533 (2010). https://doi.org/10.1007/s00894-009-0569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0569-z

Keywords

Navigation