Skip to main content
Log in

Docking studies on a refined human β2 adrenoceptor model yield theoretical affinity values in function with experimental values for R-ligands, but not for S-antagonists

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

G-protein coupled receptors (GPCR) belong to the largest group of membrane proteins involved in signal transduction. These receptors are implicated in diverse physiological and pathological events. The human β2 adrenergic receptor (hβ2AR) is one of the few GPCRs whose 3-D structures are available on the Protein Data Bank. Because there is great interest by drug developers for hβ2AR as a target, it is necessary to study its ligand-recognition process at the atomic level. The hβ2AR can recognize both R/S enantiomeric ligands, R-agonists result in a greater activation than do S-agonists (eutomers and distomers for activation, respectively), according to experimental results. In this work is reported the ligand recognition on a refined hβ2AR-structure of a set of well-known R/S-ligands by means of docking studies. Data obtained in silico were analyzed and compared with those reported in vitro. The theoretical affinity values were reproduced for agonists, but not for antagonist (or inverse agonists). However, theoretical data for R-antagonists are in function to experimental data. The theoretical results confirm the role of amino acids previously reported by mutagenesis studies due to their important roles in drug affinity and stereoselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Chart 1
Chart 2
Chart 3
Chart 4
Scheme 2

Similar content being viewed by others

References

  1. Kolb P, Rosenbaum DM, Irwin JJ, Fung JJ, Kobilka BK, Shoichet BK (2009) Structure-based discovery of beta2-adrenergic receptor ligands. Proc Natl Acad Sci USA 106:6843–6848

    Article  CAS  Google Scholar 

  2. Yu IW, Bukaveckas BL (2008) Pharmacogenetic tests in asthma therapy. Clin Lab Med 28:645–665

    Article  Google Scholar 

  3. Rubenstein LA, Zauhar RJ, Lanzara RG (2006) Molecular dynamics of a biophysical model for beta2-adrenergic and G protein-coupled receptor activation. J Mol Graph Model 25:396–409

    Article  CAS  Google Scholar 

  4. Savarese TM, Fraser CM (1992) In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem J 283:1–19

    CAS  Google Scholar 

  5. Chelikani P, Hornak V, Eilers M, Reeves PJ, Smith SO, RajBhandary UL, Khorana HG (2007) Role of group-conserved residues in the helical core of beta2-adrenergic receptor. Proc Natl Acad Sci USA 104:7027–7032

    Article  CAS  Google Scholar 

  6. Bhattacharya S, Hall SE, Li H, Vaidehi N (2008) Ligand stabilized conformational states of human beta 2 adrenergic receptor: insight into G protein coupled receptor activation. Biophys J 94:2027–2042

    Article  CAS  Google Scholar 

  7. Huber T, Menon S, Sakmar TP (2008) Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery. Biochem 47:11013–11023

    Article  CAS  Google Scholar 

  8. Audet M, Bouvier M (2008) Insights into signaling from the β2-adrenergic receptor structure. Nat Chem Biol 4:397–403

    Article  CAS  Google Scholar 

  9. Costanzi S (2008) On the applicability of GPCR models to Computer-aided Drug Discovery: a comparison between in silico and crystal structure of the β2-adrenergic receptor. J Med Chem 51:2907–2914

    Article  CAS  Google Scholar 

  10. Spijker P, Vaidehi N, Freddolino LP, Hilbers PAJ, Goddard WA (2006) Dynamic behavior of fully solvated β2-adrenergic receptor, embedded in the membrane with bound agonist or antagonist. Proc Natl Acad Sci USA 103:4882–4887

    Article  CAS  Google Scholar 

  11. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  CAS  Google Scholar 

  12. Swaminath G, Xiang Y, Lee TW, Steenhuis J, Parnot C, Kobilka BK (2004) Sequential binding of agonists to the β2 adrenoceptor. J Biol Chem 279:686–691

    Article  CAS  Google Scholar 

  13. Ambrosio C, Molinari P, Cotecchia S, Costa T (2000) Catechol-binding serines of beta(2)-adrenergic receptors control the equilibrium between active and inactive receptor states. Mol Pharmacol 57:198–210

    CAS  Google Scholar 

  14. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  Google Scholar 

  15. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781–1802

    Article  CAS  Google Scholar 

  16. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  17. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinf 21:1908–1916

    Article  CAS  Google Scholar 

  18. Soriano-Ursúa MA, Valencia-Hernández I, Arellano-Mendoza MG, Correa-Basurto J, Trujillo-Ferrara JG (2009) Synthesis, pharmacological and in silico evaluation of 1-(4-di-hydroxy-3, 5-dioxa-4-borabicyclo[4.4.0]deca-7, 9, 11-trien-9-yl)-2-(tert-butyl-amino)ethanol, a compound designed to act as a β2 adrenoceptor agonist. Eur J Med Chem 44:2840–2846

    Article  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB et al (1998) Gaussian 98, Version A.7. Gaussian Inc, Pittsburgh

    Google Scholar 

  20. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comp Chem 19:1639–1662

    Article  CAS  Google Scholar 

  21. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    Article  CAS  Google Scholar 

  22. Swaminath G, Deupi X, Lee TW, Zhu W, Thian FS, Kobilka TS, Kobilka B (2005) Probing the β2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonist and partial agonists. J Biol Chem 280:22165–22171

    Article  CAS  Google Scholar 

  23. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  Google Scholar 

  24. January B, Siebold A, Whaley B, Hiplin RW, Lin D, Schonbrunn A, Barber R, Clark RB (1997) beta(2)-adrenergic receptor desensitization, internalization and phosphorylation in response to full and partial agonists. J Biol Chem 272:23871–23879

    Article  CAS  Google Scholar 

  25. Liapakis G, Chan WC, Papadokostaki M, Javitch JA (2004) Synergistic contributions of the functional groups of epinephrine to its affnity and efficacy at the beta(2)-adrenergic receptor. Mol Pharmacol 65:1181–1190

    Article  CAS  Google Scholar 

  26. Baker JG (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol 144:317–322

    Article  CAS  Google Scholar 

  27. Wieland K, Zuurmond HM, Krasel C, Ijzerman AP, Lohse MJ (1996) Involvement of Asn-293 in stereospecif agonist recognition and in activation of the beta 2-adrenergic receptor. Proc Natl Acad Sci USA 93:9276–9281

    Article  CAS  Google Scholar 

  28. Hannawacker A, Krasel C, Lohse MJ (2002) Mutation of Asn293 to Asp in transmembrane helix VI abolishes agonist-induced but not constitutive activity of the beta(2)-adrenergic receptor. Mol Pharmacol 62:1431–1437

    Article  CAS  Google Scholar 

  29. Kikkawa H, Isogaya M, Nagao T, Kurose H (1998) The role of the seventh transmembrane region in high affinity binding of a beta 2-selective agonist TA-2005. Mol Pharmacol 53:128–134

    CAS  Google Scholar 

  30. O’Dowd BF, Hnatowich M, Regan JW, Leader WM, Caron MG, Lefkowitz RJ (1988) Site-directed mutagenesis of the cytoplasmic domains of the human beta 2-adrenergic receptor. Localization of regions involved in G protein-receptor coupling. J Biol Chem 263:15985–15992

    Google Scholar 

  31. De Graaf C, Rognan D (2008) Selective structure-based virtual screening for full and partial agonist of the β2 adrenergic receptor. J Med Chem 51:4978–4985

    Article  Google Scholar 

  32. Brooks WH, Daniel KG, Sung SS, Guida WC (2008) Computational validation of the importance of absolute stereochemistry in virtual screening. J Chem Inf Model 48:639–645

    Article  CAS  Google Scholar 

  33. Kobilka BK (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta 1768:794–807

    Article  CAS  Google Scholar 

  34. Fraser CM (1989) Site-directed mutagenesis of beta adrenergic receptors. Identification of conserved cysteine residues that independently affect ligand binding and receptor activation. J Biol Chem 264:9266–9270

    CAS  Google Scholar 

  35. Fatakia SN, Costanzi S, Chow CC (2009) Computing highly correlated positions using mutual information and graph theory for G protein-coupled receptors. PLoS One 4:e4681

    Article  Google Scholar 

  36. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a β1 adrenergic G-protein coupled receptor. Nature 454:486–492

    Article  CAS  Google Scholar 

  37. Mustafi D, Palczewski K (2009) Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 75:1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Consejo Nacional de Ciencia Y Tecnología (CONACyT) (62488) and Comisión de Operación y Fomento de Actividades Académicas -Sección de Investigación y Posgrado del Instituto Politécnico Nacional (20080026). We would also like to thank Ian Ilizaliturri Flores for building and supporting the cluster used to run docking simulations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marvin A. Soriano-Ursúa or José Correa-Basurto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soriano-Ursúa, M.A., Trujillo-Ferrara, J.G., Álvarez-Cedillo, J. et al. Docking studies on a refined human β2 adrenoceptor model yield theoretical affinity values in function with experimental values for R-ligands, but not for S-antagonists. J Mol Model 16, 401–409 (2010). https://doi.org/10.1007/s00894-009-0563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0563-5

Keywords

Navigation