The tri–μ–hydrido–bis[(η5–C5Me5)aluminum(III)] theoretical study, the assets of sandwiched M2H3 (M of 13th group elements) stability

Abstract

The stability of the tri–μ–hydrido–bis[(η5–C5Me5)aluminum], Cp*2Al2H3, 1 is studied at B3LYP/6–311+G(d,p), CCSD(T)//B3LYP/6–311+G(d,p) and MP4//B3LYP/6–311+G(d,p) levels. The coordination between Al2H3 entity and both C5(CH3)5 groups is ensured by strong electrostatic and orbital interactions. The orbital analysis of the interacting fragments shows that Al2H3 acceptor, which keeps its tribridged structure, implies the vacant \( \left( {{\text{a}}_1^\prime } \right) \) and five antibonding (\( a_2^{\prime \prime } \), e′ and e″) molecular orbitals to interact with two orbitals mixtures, b1 and e" of the donors (C5Me5). When we take into account the solvent effect, the computation shows that 1 seems to be stable in condensed phase with a tribridged bond between the Al atoms [Cp*Al(μ-H)3AlCp*], whereas in the gas phase, the monobridged Cp*AlH(μ-H)AlHCp* 4 is slightly favored (4 kcal mol−1). We propose that 1 could be prepared thanks to Cp*Al (2) and Cp*AlH2 (3) reaction in acidic medium. The experimental treatment of this type of metallocenes would contribute to the development of the organometallic chemistry of 13th group elements.

The tri–μ–hydrido–bis[(η5–C5Me5)aluminum(III)] stability

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Abbreviations

Cp:

Cyclopentadienyl(C5H5)

Cp*:

Pentamethylcyclopentadienyl(C5Me5)

PES:

Potential energy surface

DFT:

Density functional theory

3c-2e:

Three centres-two electrons

References

  1. 1.

    Kealy TJ, Pauson PL (1951) Nature 168:1039–1040

    Article  CAS  Google Scholar 

  2. 2.

    Resa I, Carmona E, Gutierrez-Puebla E, Monge A (2004) Science 305:1136–1138

    Article  CAS  Google Scholar 

  3. 3.

    Xie Y, Schaefer HF, Jemmis ED (2005) Chem Phys Lett 402:414–421

    Article  CAS  Google Scholar 

  4. 4.

    Xie Y, Schaefer HF, King RB (2005) J Am Chem Soc 127:2818–2819

    Article  CAS  Google Scholar 

  5. 5.

    Timoshkin YA, Schaefer HF (2005) Organometallics 24:3343–3345

    Article  CAS  Google Scholar 

  6. 6.

    Kan Y (2006) THEOCHEM 805:127–132

    Article  Google Scholar 

  7. 7.

    Philpott MR, Kawazoe Y (2007) Chem Phys 333:201–207

    Article  CAS  Google Scholar 

  8. 8.

    Philpott MR, Kawazoe Y (2006) THEOCHEM 776:113–123

    Article  CAS  Google Scholar 

  9. 9.

    Wang H, Yang C, Wan B, Han KL (2006) J Theor Comp Chem 5:461–473

    Article  Google Scholar 

  10. 10.

    He N, Xie HB, Ding YH (2007) Organometallics 26:6839–6843

    Article  CAS  Google Scholar 

  11. 11.

    Guermoune A, Jarid A (2007) Chem Phys 333:1–9

    Article  CAS  Google Scholar 

  12. 12.

    Lammertsma K, Ohwada T (1996) J Am Chem Soc 118:7247–7254

    Article  CAS  Google Scholar 

  13. 13.

    Dohmeier C, Schnöckel H, Robl C, Schneider U, Ahlrichs R (1993) Angew Chem Int Ed Engl 32:1655–1657

    Article  Google Scholar 

  14. 14.

    Bochmann M, Dawson DM (1996) Angew Chem Int Ed Engl 35:2226–2228

    Article  CAS  Google Scholar 

  15. 15.

    Jean Y (2005) Molecular Orbitals of Transition Metal Complexes. Oxford University Press, London

    Google Scholar 

  16. 16.

    Gorden JD, Macdonald CLB, Cowley AH (2001) Chem Commun 1:75–76

    Article  Google Scholar 

  17. 17.

    Cowley AH (2004) Chem Commun 21:2369–2375

    Article  Google Scholar 

  18. 18.

    Vidovic D, Reeske G, Findlater M, Cowley AH (2008) Dalton Trans 17:2293–2297

    Article  Google Scholar 

  19. 19.

    Himmel HJ, Vollet J (2002) Organometallics 21:5972–5977

    Article  CAS  Google Scholar 

  20. 20.

    Budzelaar PHM, Engelberts JJ, van Lenthe JH (2003) Organometallics 22:1562–1576

    Article  CAS  Google Scholar 

  21. 21.

    Rayon VM, Frenking G (2002) Chem Eur J 8:4693–4707

    Article  CAS  Google Scholar 

  22. 22.

    Shapiro PJ (1999) Coord Chem Rev 189:1–17

    Article  CAS  Google Scholar 

  23. 23.

    Jutzi P, Burford N (1999) Chem Rev 99:969–990

    Article  CAS  Google Scholar 

  24. 24.

    Beswick MA, Palmer JS, Wright DS (1998) Chem Soc Rev 3:225–232

    Article  Google Scholar 

  25. 25.

    Shima T, Suzuki H (2000) Organometallics 19:2420–2422

    Article  CAS  Google Scholar 

  26. 26.

    Shima T, Ito J, Suzuki H (2001) Organometallics 20:10–12

    Article  CAS  Google Scholar 

  27. 27.

    Schneider JJ, Goddard R, Werner S, Krüger C (1991) Angew Chem Int Ed Engl 30:1124–1126

    Article  Google Scholar 

  28. 28.

    Abrahamson HB, Niccolai GP, Heinekey DM, Casey CP, Bursten BE (1992) Angew Chem Int Ed Engl 31:471–473

    Article  Google Scholar 

  29. 29.

    Aldridge S, Downs AJ (2001) Chem Rev 101:3305–3366

    Article  CAS  Google Scholar 

  30. 30.

    Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  31. 31.

    Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. 32.

    Lee C, Yang W, Parr PG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  33. 33.

    Bartlett RJ, Purvis GD (1978) Int J Quant Chem 14:561–581

    Article  CAS  Google Scholar 

  34. 34.

    Krishnan R, Pople JP (1978) Int J Quant Chem 14:91–100

    Article  CAS  Google Scholar 

  35. 35.

    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  36. 36.

    Miertus S, Scrocco E, Tomasi J (1981) J Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  37. 37.

    Miertus S, Tomasi J (1982) Chem Phys 65:239–245

    Article  CAS  Google Scholar 

  38. 38.

    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  39. 39.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D01. Gaussian Inc, Wallingford, CT

  40. 40.

    Albright TA, Burdett JK, Whangbo MH (1985) Orbital Interaction in Chemistry. Wiley, New York, p 391

  41. 41.

    El Guerraze A, El Nahas AM, Jarid A, Serrar C, Anane H, Esseffar M (2005) Chem Phys 313:159–168 and references therein

    Article  Google Scholar 

  42. 42.

    Frenking G, Wichmann K, Frohlich N, Loschen C, Lein M, Frunzke J, Rayon VM (2003) Coord Chem Rev 238:55–82

    Article  Google Scholar 

  43. 43.

    Rayon VM, Frenking G (2002) Chem Eur J 8:4693–4707

    Article  CAS  Google Scholar 

  44. 44.

    Hardman NJ, Power PP, Gorden JD, Macdonald CLB, Cowley AH (2001) Chem Commun 18:1866–1867

    Article  Google Scholar 

  45. 45.

    Gorden JD, Voigt A, Macdonald CLB, Silverman JS, Cowley AH (2000) J Am Chem Soc 122:950–951

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by "Agence Universitaire de la Francophonie" (AUF, PCSI2005, 6313PS561). We thank Professor Yves Jean (Paris) for valuable discussions. We dedicate this paper in memory of Doctor Ibrahim Awad Ibrahim (Michigan) for his editorial comments in all works we have published.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdellah Jarid.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

Structural and fluxional phenomenon data are summarized in Supplementary Material associated with this article. (DOC 1925 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guermoune, A., Lamsabhi, A.M., Cherqaoui, D. et al. The tri–μ–hydrido–bis[(η5–C5Me5)aluminum(III)] theoretical study, the assets of sandwiched M2H3 (M of 13th group elements) stability. J Mol Model 16, 551–557 (2010). https://doi.org/10.1007/s00894-009-0562-6

Download citation

Keywords

  • (C5(Me)5)2Al2H3
  • Coordination
  • Decamethylcyclopentadienyl
  • DFT calculation
  • Dimetallocenes