Journal of Molecular Modeling

, Volume 16, Issue 3, pp 551–557 | Cite as

The tri–μ–hydrido–bis[(η5–C5Me5)aluminum(III)] theoretical study, the assets of sandwiched M2H3 (M of 13th group elements) stability

  • Abdeladim Guermoune
  • Al Mokhtar Lamsabhi
  • Driss Cherqaoui
  • Abdellah JaridEmail author
  • Hafid Anane
  • Gabriel Merino
Original Paper


The stability of the tri–μ–hydrido–bis[(η5–C5Me5)aluminum], Cp*2Al2H3, 1 is studied at B3LYP/6–311+G(d,p), CCSD(T)//B3LYP/6–311+G(d,p) and MP4//B3LYP/6–311+G(d,p) levels. The coordination between Al2H3 entity and both C5(CH3)5 groups is ensured by strong electrostatic and orbital interactions. The orbital analysis of the interacting fragments shows that Al2H3 acceptor, which keeps its tribridged structure, implies the vacant \( \left( {{\text{a}}_1^\prime } \right) \) and five antibonding (\( a_2^{\prime \prime } \), e′ and e″) molecular orbitals to interact with two orbitals mixtures, b1 and e" of the donors (C5Me5). When we take into account the solvent effect, the computation shows that 1 seems to be stable in condensed phase with a tribridged bond between the Al atoms [Cp*Al(μ-H)3AlCp*], whereas in the gas phase, the monobridged Cp*AlH(μ-H)AlHCp* 4 is slightly favored (4 kcal mol−1). We propose that 1 could be prepared thanks to Cp*Al (2) and Cp*AlH2 (3) reaction in acidic medium. The experimental treatment of this type of metallocenes would contribute to the development of the organometallic chemistry of 13th group elements.


The tri–μ–hydrido–bis[(η5–C5Me5)aluminum(III)] stability


(C5(Me)5)2Al2H3 Coordination Decamethylcyclopentadienyl DFT calculation Dimetallocenes 







Potential energy surface


Density functional theory


Three centres-two electrons



This work is partially supported by "Agence Universitaire de la Francophonie" (AUF, PCSI2005, 6313PS561). We thank Professor Yves Jean (Paris) for valuable discussions. We dedicate this paper in memory of Doctor Ibrahim Awad Ibrahim (Michigan) for his editorial comments in all works we have published.

Supplementary material

894_2009_562_MOESM1_ESM.doc (1.9 mb)
ESM1 Structural and fluxional phenomenon data are summarized in Supplementary Material associated with this article. (DOC 1925 kb)


  1. 1.
    Kealy TJ, Pauson PL (1951) Nature 168:1039–1040CrossRefGoogle Scholar
  2. 2.
    Resa I, Carmona E, Gutierrez-Puebla E, Monge A (2004) Science 305:1136–1138CrossRefGoogle Scholar
  3. 3.
    Xie Y, Schaefer HF, Jemmis ED (2005) Chem Phys Lett 402:414–421CrossRefGoogle Scholar
  4. 4.
    Xie Y, Schaefer HF, King RB (2005) J Am Chem Soc 127:2818–2819CrossRefGoogle Scholar
  5. 5.
    Timoshkin YA, Schaefer HF (2005) Organometallics 24:3343–3345CrossRefGoogle Scholar
  6. 6.
    Kan Y (2006) THEOCHEM 805:127–132CrossRefGoogle Scholar
  7. 7.
    Philpott MR, Kawazoe Y (2007) Chem Phys 333:201–207CrossRefGoogle Scholar
  8. 8.
    Philpott MR, Kawazoe Y (2006) THEOCHEM 776:113–123CrossRefGoogle Scholar
  9. 9.
    Wang H, Yang C, Wan B, Han KL (2006) J Theor Comp Chem 5:461–473CrossRefGoogle Scholar
  10. 10.
    He N, Xie HB, Ding YH (2007) Organometallics 26:6839–6843CrossRefGoogle Scholar
  11. 11.
    Guermoune A, Jarid A (2007) Chem Phys 333:1–9CrossRefGoogle Scholar
  12. 12.
    Lammertsma K, Ohwada T (1996) J Am Chem Soc 118:7247–7254CrossRefGoogle Scholar
  13. 13.
    Dohmeier C, Schnöckel H, Robl C, Schneider U, Ahlrichs R (1993) Angew Chem Int Ed Engl 32:1655–1657CrossRefGoogle Scholar
  14. 14.
    Bochmann M, Dawson DM (1996) Angew Chem Int Ed Engl 35:2226–2228CrossRefGoogle Scholar
  15. 15.
    Jean Y (2005) Molecular Orbitals of Transition Metal Complexes. Oxford University Press, LondonGoogle Scholar
  16. 16.
    Gorden JD, Macdonald CLB, Cowley AH (2001) Chem Commun 1:75–76CrossRefGoogle Scholar
  17. 17.
    Cowley AH (2004) Chem Commun 21:2369–2375CrossRefGoogle Scholar
  18. 18.
    Vidovic D, Reeske G, Findlater M, Cowley AH (2008) Dalton Trans 17:2293–2297CrossRefGoogle Scholar
  19. 19.
    Himmel HJ, Vollet J (2002) Organometallics 21:5972–5977CrossRefGoogle Scholar
  20. 20.
    Budzelaar PHM, Engelberts JJ, van Lenthe JH (2003) Organometallics 22:1562–1576CrossRefGoogle Scholar
  21. 21.
    Rayon VM, Frenking G (2002) Chem Eur J 8:4693–4707CrossRefGoogle Scholar
  22. 22.
    Shapiro PJ (1999) Coord Chem Rev 189:1–17CrossRefGoogle Scholar
  23. 23.
    Jutzi P, Burford N (1999) Chem Rev 99:969–990CrossRefGoogle Scholar
  24. 24.
    Beswick MA, Palmer JS, Wright DS (1998) Chem Soc Rev 3:225–232CrossRefGoogle Scholar
  25. 25.
    Shima T, Suzuki H (2000) Organometallics 19:2420–2422CrossRefGoogle Scholar
  26. 26.
    Shima T, Ito J, Suzuki H (2001) Organometallics 20:10–12CrossRefGoogle Scholar
  27. 27.
    Schneider JJ, Goddard R, Werner S, Krüger C (1991) Angew Chem Int Ed Engl 30:1124–1126CrossRefGoogle Scholar
  28. 28.
    Abrahamson HB, Niccolai GP, Heinekey DM, Casey CP, Bursten BE (1992) Angew Chem Int Ed Engl 31:471–473CrossRefGoogle Scholar
  29. 29.
    Aldridge S, Downs AJ (2001) Chem Rev 101:3305–3366CrossRefGoogle Scholar
  30. 30.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  31. 31.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  32. 32.
    Lee C, Yang W, Parr PG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  33. 33.
    Bartlett RJ, Purvis GD (1978) Int J Quant Chem 14:561–581CrossRefGoogle Scholar
  34. 34.
    Krishnan R, Pople JP (1978) Int J Quant Chem 14:91–100CrossRefGoogle Scholar
  35. 35.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  36. 36.
    Miertus S, Scrocco E, Tomasi J (1981) J Chem Phys 55:117–129CrossRefGoogle Scholar
  37. 37.
    Miertus S, Tomasi J (1982) Chem Phys 65:239–245CrossRefGoogle Scholar
  38. 38.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D01. Gaussian Inc, Wallingford, CTGoogle Scholar
  40. 40.
    Albright TA, Burdett JK, Whangbo MH (1985) Orbital Interaction in Chemistry. Wiley, New York, p 391Google Scholar
  41. 41.
    El Guerraze A, El Nahas AM, Jarid A, Serrar C, Anane H, Esseffar M (2005) Chem Phys 313:159–168 and references thereinCrossRefGoogle Scholar
  42. 42.
    Frenking G, Wichmann K, Frohlich N, Loschen C, Lein M, Frunzke J, Rayon VM (2003) Coord Chem Rev 238:55–82CrossRefGoogle Scholar
  43. 43.
    Rayon VM, Frenking G (2002) Chem Eur J 8:4693–4707CrossRefGoogle Scholar
  44. 44.
    Hardman NJ, Power PP, Gorden JD, Macdonald CLB, Cowley AH (2001) Chem Commun 18:1866–1867CrossRefGoogle Scholar
  45. 45.
    Gorden JD, Voigt A, Macdonald CLB, Silverman JS, Cowley AH (2000) J Am Chem Soc 122:950–951CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Abdeladim Guermoune
    • 1
  • Al Mokhtar Lamsabhi
    • 1
    • 3
  • Driss Cherqaoui
    • 1
  • Abdellah Jarid
    • 1
    Email author
  • Hafid Anane
    • 1
  • Gabriel Merino
    • 2
  1. 1.Département de Chimie, Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMorocco
  2. 2.Facultad de QuímicaUniversidad de GuanjuatoGuanajuato GtoMéxico
  3. 3.Universidad Autónoma de MadridMadridSpain

Personalised recommendations