Skip to main content
Log in

Mg-Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular modeling in combination with powder X-ray diffraction (XRD) provided new information on the organization of the interlayer space of Mg-Al layered double hydroxide (LDH) containing intercalated porphyrin anions [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS)]. Anion-exchange and rehydration procedures were used for the preparation of TPPS-containing LDH with an Mg/Al molar ratio of 2. Molecular modeling was carried out in the Cerius2 and Materials Studio modeling environment. Three types of models were created in order to simulate the experimental XRD patterns of LDH intercalates with a TPPS loading of 70–80% with respect to the theoretical anion exchange capacity (AEC). The models represent single-phase systems with a 100% TPPS loading in the interlayer space (Type 1) and models represent the coexistence of two phases corresponding to the total exchange from 75 to 92% (Type 2). To cover other possible arrangements, models with the coexistence of both TPPS and NO 3 anions in the same interlayer space were calculated (Type 3). The models are described and compared with experimental data. In all cases, guest TPPS anions are tilted with respect to the hydroxide layers, and are horizontally shifted to each other by up to one-half of the TPPS diameter. According to the energy characteristics and simulated XRD, the most probable arrangement is of Type 2, where some layers are saturated with TPPS anions and others are filled with original NO 3 anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7a–c

Similar content being viewed by others

References

  1. Rives V (ed) (2001) Layered double hydroxides: present and future. Nova Science, New York, pp 251–411

    Google Scholar 

  2. Wypych F, Satyanarayana KG (2004) (eds) Clay surfaces: fundamentals and application. Elsevier, pp 374–546

  3. Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301. doi:10.1016/0920-5861(91)80068-K

    Article  CAS  Google Scholar 

  4. Kovanda F, Jirátová K, Kalousková R (2006) Synthetic hydrotalcite-like compounds. In: Gerard FL (ed) Advances in chemistry research, vol 1. Nova Science, New York, pp 89–139

    Google Scholar 

  5. Lang K, Bezdička P, Bourdelande JL, Hernando J, Jirka I, Káfuňková E, Kovanda F, Kubát P, Mosinger J, Wagnerová DM (2007) Layered double hydroxides with intercalated porphyrins as photofunctional materials: subtle structural changes modify singlet oxygen production. Chem Mater 19:3822–3829. doi:10.1021/cm070351d

    Article  CAS  Google Scholar 

  6. Del Hoyo C (2007) Layered double hydroxides and human health: an overview. Appl Clay Sci 36:103–121. doi:10.1016/j.clay.2006.06.010

    Article  Google Scholar 

  7. Kim JY, Choi SJ, Oh JM, Park T, Choy JH (2007) Anticancer drug-inorganic nanohybrid and its cellular interaction. J Nanosci Nanotechnol 7:3700–3705, PMID: 18047040

    Article  CAS  Google Scholar 

  8. Acharya H, Srivastava SK, Bhowmick AK (2007) Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: structural characterization and properties. Compos Sci Technol 67:2807–2816. doi:10.1016/j.compscitech.2007.01.030

    Article  CAS  Google Scholar 

  9. Costa FR, Saphianikova M, Wagenknecht U, Heinrich G (2007) Layered double hydroxide based polymer nanocomposites. Adv Polym Sci 210:101–168, ISSN: 0065-3195

    Article  Google Scholar 

  10. Greenwell HC, Jones W, Coveney PV, Stackhouse S (2006) On the molecular modeling of the structure and properties of clays: a materials chemistry perspective. J Mater Chem 16:708–723. doi:10.1039/b506932g

    Article  CAS  Google Scholar 

  11. Kumar PP, Kalinichev AG, Kirkpatrick RJ (2006) Molecular dynamics simulation of the energetics and structure of layered double hydroxides intercalated with carboxylic acids. J Phys Chem C 111:13517–13523. doi:10.1021/jp0732054

    Article  Google Scholar 

  12. Newman SP, Cristina TD, Coveney PV (2002) Molecular dynamics simulation of cationic and anionic clays containing amino acids. Langmuir 18:2933–2939. doi:10.1021/1a0114528

    Article  CAS  Google Scholar 

  13. Bonnet S, Forano C, De Roy A, Besse JP, Maillard P, Momenteau M (1996) Synthesis of hybrid organo-mineral materials: anionic tetraphenylporphyrins in layered double hydroxides. Chem Mater 8:1962–1968. doi:10.1021/cm960020t

    Article  CAS  Google Scholar 

  14. Marques HM, Brown KL (2002) Molecular mechanics and molecular dynamics simulations of porphyrins, metalloporphyrins, heme proteins and cobalt corrinoids. Coord Chem Rev 225:123–158. doi:10.1016/S0010-8545(01)00411-8

    Article  CAS  Google Scholar 

  15. Wang J, Kalinichev AG, Kirkpatrick RJ, Hou X (2006) Effects of substrate structure and composition of the structure, dynamics, and energetics of water at mineral surfaces: a molecular modeling study. Geochim Cosmochim Acta 70:562–582. doi:10.1016/j.gca.2005.10.006

    Article  CAS  Google Scholar 

  16. Kim N, Kim Y, Tsotsis TT, Sahimi M (2005) Atomistic simulation of nanoporous layered double hydroxide materials and their properties. I. Structural modeling. J Chem Phys 122:214713. doi:10.1063/1.1902945

    Article  Google Scholar 

  17. Lang K, Mosinger J, Wagnerová DM (2004) Photophysical properties of porhyrinoid senzitizers non-covalently bound to host molecules; models for photodynamic therapy. Coord Chem Rev 248:321–350. doi:10.1016/j.ccr.2004.02.004

    Article  CAS  Google Scholar 

  18. Lang K, Kubát P, Mosinger J, Bujdák J, Hof M, Janda P, Sýkora J, Iyi N (2008) Photoactive oriented films of layered double hydroxides. Phys Chem Chem Phys 10:4429–4434, PMID: 18654682

    Article  CAS  Google Scholar 

  19. Kanezaki E, Kinugawa K, Ishikawa Y (1994) Conformation of intercalated aromatic molecular anions between layers of Mg/Al- and Zn/Al- hydrotalcites. Chem Phys Lett 226:325–330. doi:10.1016/0009-2614(94)00734-9

    Article  CAS  Google Scholar 

  20. Barbosa CAS, Ferreira AMDC, Constantino VRL, Coelho ACV (2002) Preparation and characterization of Cu(II) phtalocyanine tetrasulfonate intercalated and supported on layered double hydroxides. J Incl Phenom Macrocycl Chem 42:15–23. doi:10.1023/A:1014598231722

    Article  CAS  Google Scholar 

  21. Barbosa CAS, Ferreira AMDC, Constantino VRL (2005) Synthesis and Characterization of Magnesium-Aluminium Layered Double Hydroxides Containing (Tetrasulfonated porphyrin)cobalt. Eur J Inorg Chem 2005:1577–1584. doi:10.1002/ejic.200400875

  22. Sazanovich IV, Galievsky VA, van Hoek A, Schaafsma TJ, Malinovskii VL, Holten D, Chirvony VS (2001) Photophysical and structural properties of saddle-shaped free base porphyrins: evidence for an “orthogonal” dipole moment. J Phys Chem B 105:7818–7829. doi:10.1021/jp010274o

    Article  CAS  Google Scholar 

  23. Comba P, Hambley TW (1995) Molecular modeling of inorganic compounds. VCH, Weinheim

    Google Scholar 

  24. Accelrys Software (2003) Materials studio modeling environment, Release 4.3 documentation. Accelrys Software Inc, San Diego

  25. Sideris PJ, Nielsen UG, Gan Z, Grey CP (2008) Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science 321:113–117. doi:10.1126/science.1157581

    Article  CAS  Google Scholar 

  26. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a rule-based full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. doi:10.1021/ja00051a040

    Article  Google Scholar 

  27. Mayo SL, Olafson BD, Goddard WA III (1990) Dreiding: a generic force field for molecular simulations. J Phys Chem 94:8897–8909. doi:10.1021/j100389a010

    Article  CAS  Google Scholar 

  28. Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem 15:162–182. doi:10.1002/jcc.540150207

    Article  CAS  Google Scholar 

  29. Hwang MJ, Stockfisch TP, Hagler AT (1994) Derivation of class II force fields. 2. Derivation and characterization of a Class II Force Field, CFF93, for the alkyl functional group and alkane molecules. J Am Chem Soc 116:2515–2525. doi:10.1021/ja00085a036

    Article  CAS  Google Scholar 

  30. Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116:2978–2987. doi:10.1021/ja00086a030

    Article  CAS  Google Scholar 

  31. Costantino U, Coletti N, Nochcetti M (1999) Anion exchange of methyl orange into Zn-Al synthetic hydrotalcite and photophysical characterization of the intercalates obtained. Langmuir 15:4454–4460. doi:10.21/la981672u

    Article  CAS  Google Scholar 

  32. Miyata S (1983) Anion-exchange properties of hydrotalcite-like compounds. Clays Clay miner 31:305–311

    Article  CAS  Google Scholar 

  33. Rappe AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363. doi:10.1021/j100161a070

    Article  CAS  Google Scholar 

  34. Karasawa N, Goddard WA (1989) Acceleration of convergence for lattice sums. J Phys Chem 93:7320–7327. doi:10.1021/j100358a012

    Article  CAS  Google Scholar 

  35. Lennard-Jones JE (1925) Proc R Soc Lond, series A 109(752):584–597

    Article  CAS  Google Scholar 

  36. Thyveetil MA, Coveney PV, Greenwell HC, Suter JL (2008) Computer simulation study of the structural stability and materials properties of DNA-intercalated layered double hydroxides. J Am Chem Soc 130:4742–4756. doi:10.1021/ja077679s

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 0021620835 and MSM 6046137302), the Czech Science Foundation (203/06/1244, 202/05/H003 and 205/08/0869), and the Grant Agency of the Academy of Sciences of the Czech Republic (KAN 100500651). The authors thank Petr Bezdička (Institute of Inorganic Chemistry AS CR, v.v.i.) for measuring the powder XRD patterns of the prepared samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kovář.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovář, P., Pospíšil, M., Káfuňková, E. et al. Mg-Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments. J Mol Model 16, 223–233 (2010). https://doi.org/10.1007/s00894-009-0537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0537-7

Keyword

Navigation