Skip to main content
Log in

Variation of reaction dynamics for OH hydrogen abstraction from glycine between ab initio levels of theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The variation in reaction dynamics of OH hydrogen abstraction from glycine between HF, MP2, CCSD(T), M05-2X, BHandHLYP, and B3LYP levels was demonstrated. The abstraction mode shows distinct patterns between these five levels and determines the barrier height, and the spin density transfer between OH radical and glycine. These differences are mainly resulted from the spin density distribution and geometry of the alpha carbon during the abstraction. The captodative effect which is commonly believed as one of the major factors to stabilize the caron-centered radical can only be observed in DFT levels but not in HF and MP2 levels. Difference in the abstraction energy were found in these calculation levels, by using the result of CCSD(T) as reference, B3LYP, BHandHLYP, and M05-2X underestimated the reaction barrier about 5.1, 0.1, and 2.4 kcal mol-1, while HF and MP2 overestimated 19.1 kcal mol-1 and 1.6 kcal mol-1, respectively. These differences can be characterized by the vibration mode of imaginary frequency of transition states, which indicates the topology around transition states and determines reaction barrier height. In this model system, BHandHLYP provides the best prediction of the energy barrier among those tested methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) J Chem Phys 112:7374–7383

    Article  CAS  Google Scholar 

  2. Tuma C, Boese AD, Handy NC (1999) Phys Chem Chem Phys 1:3939–3947

    Article  CAS  Google Scholar 

  3. Gonzalez L, Mo O, Yanez M (1997) J Comput Chem 18:1124–1135

    Article  CAS  Google Scholar 

  4. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626

    Article  CAS  Google Scholar 

  5. Toulouse J, Colonna F, Savin A (2004) Phys Rev A 70:62505

    Article  Google Scholar 

  6. Zhao Y, Gonzalez-Garcia N, Truhlar DG (2005) J Phys Chem A 109:2012–2018

    Article  CAS  Google Scholar 

  7. Johnson BG, Gonzales CA, Gill PMW, Pople JA (1994) Chem Phys Lett 221:100–108

    Article  CAS  Google Scholar 

  8. Song JW, Tokura S, Sato T, Watson MA, Hirao K (2007) J Chem Phys 127:154109

    Article  Google Scholar 

  9. Song JW, Hirosawa T, Tsuneda T, Hirao K (2007) J Chem Phys 126:154105

    Article  Google Scholar 

  10. Goll E, Werner HJ, Stoll H, Leininger T, Gori-Giorgi P, Savin A (2006) Chem Phys 329:276–282

    Article  CAS  Google Scholar 

  11. Leininger T, Stoll H, Werner HJ, Savin A (1997) Chem Phys Lett 275:151–160

    Article  CAS  Google Scholar 

  12. Truhlar DG, Gordon MS (1990) Science 249:491–498

    Article  CAS  Google Scholar 

  13. Truhlar DG, Steckler R, Gordon MS (1987) Chem Rev 87:217–236

    Article  CAS  Google Scholar 

  14. Fukui K (1970) J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  15. Lu H-F, Li F-Y, Lin S-H (2007) J Comput Chem 28:783–794

    Article  CAS  Google Scholar 

  16. Cheng W-C, Soonmin J, Wu C-C, Lin R-J, Lu H-F, Li F-Y (2009) J Comput Chem 30:407–414

    Article  CAS  Google Scholar 

  17. Himo F (2000) Chem Phys Lett 328:270–276

    Article  CAS  Google Scholar 

  18. Yu D, Rauk A, Armstrong DA (1995) J Am Chem Soc 117:1789–1796

    Article  CAS  Google Scholar 

  19. Csaszar AG, Perczel A (1999) Prog Biophys Mol Biol 71:243–309

    Article  CAS  Google Scholar 

  20. Galano A, Alvarez-Idaboy JR, Montero LA, Vivier-Bunge A (2001) J Comput Chem 22:1138–1153

    Article  CAS  Google Scholar 

  21. Zhao Y, Schultz Nathan E, Truhlar DG (2006) J Chem Theor Comput 2:364–382

    Article  Google Scholar 

  22. Vincenzo B, Maurizio C (1997) J Chem Phys 107:3210–3221

    Article  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian. Gaussian Inc, Wallingford

    Google Scholar 

  24. Jonsson M, Wayner DDM, Armstrong DA, Yu D, Rauk A (1998) J Chem Soc. Perkin Trans 2(1998):1967–1972

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Council for their financial support. National Center for High-Performance Computing is acknowledged for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Yin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, RJ., Wu, CC., Jang, S. et al. Variation of reaction dynamics for OH hydrogen abstraction from glycine between ab initio levels of theory. J Mol Model 16, 175–182 (2010). https://doi.org/10.1007/s00894-009-0532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0532-z

Keywords

Navigation