Skip to main content
Log in

3D-QSAR study of c-Src kinase inhibitors based on docking

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cancer is a significant world health problem for which efficient therapies are in urgent demand. c-Src has emerged as an attractive target for drug discovery efforts toward antitumor therapies. Toward this target several series of c-Src inhibitors that showed activity in the assay have been reported. In this article, 3D-QSAR models have been built with 156 anilinoquinazoline and quinolinecarbonitrile derivative inhibitors by using CoMFA and CoMSIA methods. These studies indicated that the QSAR models were statistically significant with high predictabilities (CoMFA model, q 2 = 0.590, r 2 = 0.855; CoMSIA model, q 2 = 0.538, r 2 = 0.748). The details of c-Src kinase/inhibitor binding interactions in the crystal structure of complex provided new information for the design of new inhibitors. As a result, docking simulations were also conducted on the series of potent inhibitors. The flexible docking method, which was performed by the DOCK program, positioned all of the inhibitors into the active site to determine the probable binding conformation. The CoMFA and CoMSIA models based on the flexible docking conformations also yielded statistically significant and highly predictive QSAR models (CoMFA model, q 2 = 0.507, r 2 = 0.695; CoMSIA model, q 2 = 0.463, r 2 = 0.734). Our models would offer help to better comprehend the structure-activity relationships that exist for this class of compounds and also facilitate the design of novel inhibitors with good chemical diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomas SM, Brugge JS (1997) Celluar functions regulated by src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  CAS  Google Scholar 

  2. Russello SV, Shore SK (2004) SRC in human carcinogenesis. Front Biosci 9:139–144

    CAS  Google Scholar 

  3. Tsygankov AY, Shore SK (2004) Src: regulation, role in human carcinogenesis and pharmacological inhibitors. Curr Pharm Des 10:1745–1756

    Article  CAS  Google Scholar 

  4. Summy JM, Gallick GE (2003) Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22:337–358

    Article  CAS  Google Scholar 

  5. Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE (2002) Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer 94:344–351

    Article  Google Scholar 

  6. Boyer B, Bourgeois Y, Poupon MF (2002) Src kinase contributes to the metastatic spread of carcinoma cells. Oncogene 21:2347–2356

    Article  CAS  Google Scholar 

  7. Irby RB, Yeatman TJ (2002) Increased Src activity disrupts cadherin/ catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Res 62:2669–2674

    CAS  Google Scholar 

  8. Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG, Frame MC (2002) Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol 4:632–638

    CAS  Google Scholar 

  9. Nam JS, Ino Y, Sakamoto M, Hirohashi S (2002) Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Clin Cancer Res 8:2430–2436

    CAS  Google Scholar 

  10. Rahimi N, Hung W, Tremblay E, Saulnier R, Elliott B (1998) c-Src kinase activity is required for hepatocyte growth factor-induced motility and anchorage-independent growth of mammary carcinoma cells. J Biol Chem 273:33714–33721

    Article  CAS  Google Scholar 

  11. Jones RJ, Avizienyte E, Wyke AW, Owens DW, Brunton VB, Frame MC (2002) Elevated c-Src is linked to altered cell-matrix adhesion rather than proliferation in KM12C human colorectal cancer cells. Br J Cancer 87:1128–1135

    Article  CAS  Google Scholar 

  12. Brunton VG, Avizienyte E, Fincham VJ, Serrels B, Metcalf CA, Sawyer TK (2005) Frame identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res 65:1335–1342

    Article  CAS  Google Scholar 

  13. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res 10:2307–2318

    Article  CAS  Google Scholar 

  14. Trevino JG, Summy JM, Lesslie DP, Parikh NU, Hong DS, Lee FY, Donato NJ, Abbruzzese JL, Baker CH, Gallick GE (2006) Inhibition of Src expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. AJP 168:962–972

    CAS  Google Scholar 

  15. Levitzk A, Gazit A (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267:1782–1788

    Article  Google Scholar 

  16. Maly DJ, Choong IC, Ellman JA (2000) Combinatorial target-guided ligand assembly identification of potent subtype-selective c-Src inhibitors. Proc Natl Acad Sci 97:2419–2424

    Article  CAS  Google Scholar 

  17. Dow RL, Bechle BM, Chou TT, Goddard C, Larson ER (1995) Bioorg Med Chem Lett 5:1007–1010

    Article  CAS  Google Scholar 

  18. Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA (1996) Discovery of a Novel, Potent and Src Family-selective Tyrosine Kinase Inhibitor. J Biol Chem 271:695–701

    Article  CAS  Google Scholar 

  19. Myers MR, Setzer NN, Spada AP, Zulli AL, YJ HC, Zilberstein A, Johnson SE, Hook LE, Jacoski MV (1997) The preparation and sar of 4-(anilino), 4-(phenoxy), and 4-(thiophenoxy)-quinazolines: Inhibitors of p56lck and EGF-R tyrosine kinase activity. Bioorg Med Chem Lett 7:417–420

    Article  CAS  Google Scholar 

  20. Thompson AM, Rewcastle GW, Boushelle SL, Hartl BG, Kraker AJ, Lu GH, Batley BL, Panek RL, DH SH, Denny WA (2000) Synthesis and Structure-Activity Relationships of 7-Substituted 3-(2, 6-Dichlorophenyl)-1, 6-naphthyridin-2(1H)-ones as Selective Inhibitors of pp 60c-Src. J Med Chem 43:3134–3360

    Article  CAS  Google Scholar 

  21. Thaimattam R, Daga PR, Banerjee R, Iqbal J (2005) 3D-QSAR studies on c-Src kinase inhibitors and docking analyses of a potent dual kinase inhibitor of c-Src and c-Abl kinases. Bioorg Med Chem 13:4704–4712

    Article  CAS  Google Scholar 

  22. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  23. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a Comparative Analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  24. Cao HY, Zhang HB, Zheng XF, Gao DB (2007) 3D QSAR studies on a series of potent and high selective inhibitors for three kinases of RTK family. J Mol Graphics 26:236–245

    Article  CAS  Google Scholar 

  25. Zhou ZG, Madura JD (2004) CoMFA 3D-QSAR analysis of HIV-1 RT nonnucleoside inhibitors, TIBO derivatives based on docking conformation and alignment. J Chem Inf Comput Sci 44:2167–2178

    CAS  Google Scholar 

  26. Cui M, Huang X, Luo X, Briggs JM, Ji R, Chen K, Shen J, Jiang H (2002) Molecular docking and 3D-QSAR studies on gag peptide analogue inhibitors interacting with human cyclophilin A. J Med Chem 45:5249–5259

    Article  CAS  Google Scholar 

  27. Buolamwini JK, Assefa H (2002) CoMFA and CoMSIA 3D QSAR and docking studies on conformationally-restrained cinnamoyl HIV-1 integrase inhibitors: exploration of a binding mode at the active site. J Med Chem 45:841–852

    Article  CAS  Google Scholar 

  28. Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP, Lambert-van der Brempt C, Morgentin R, Norman RA, Olivier A, Otterbein L, Ple PA, Warin N, Costello G (2006) N-(5-Chloro-1, 3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem 49:6465–6488

    Article  CAS  Google Scholar 

  29. Ple PA, Green TP, Hennequin LF, Curwen J, Fennell M, Allen J, Lambert-van der Brempt C, Costello G (2004) Discovery of a new class of anilinoquinazoline inhibitors with high affinity and specificity for the tyrosine kinase domain of c-Src. J Med Chem 47:871–887

    Article  CAS  Google Scholar 

  30. Kuntz ID (1992) Science 257:1078–82

    Article  CAS  Google Scholar 

  31. Ewing TJA, Makino S, Skillman AG, Kuntz ID (2001) J Comput-Aid Mol Des 15:411–428

    Article  CAS  Google Scholar 

  32. DesJarlais RL, Sheridan RP, Seibel GL, Dixon JS, Kuntz ID, Venkataraghavan R (1988) J Med Chem 31:722–729

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to National Natural Science Foundation of China (No. 20671013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, R., Mi, N. & Zhang, H. 3D-QSAR study of c-Src kinase inhibitors based on docking. J Mol Model 16, 361–375 (2010). https://doi.org/10.1007/s00894-009-0530-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0530-1

Keywords

Navigation