Skip to main content
Log in

Parameterization of aromatic azido groups: application as photoaffinity probes in molecular dynamics studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The accuracy of molecular dynamics (MD) simulations is limited by the availability of parameters for the molecular system of interest. In most force fields, parameters of common chemical groups are already present. With the development of novel small organic molecules as probes to study biological systems, more chemical groups require parameterization. An azide group is often used in studies of biological systems but computational studies are still impeded by the lack of parameters. In this paper, we present a set of molecular mechanics (MM) parameters for aromatic and aliphatic azido groups, and their application in MD simulations of a photoaffinity probe currently used in our laboratory for mapping binding modes available in the active site of histone deacetylases. The parameters were developed for the generalized Amber force field (GAFF) using density functional theory (DFT) calculations at B3LYP 6-311G(d) level. The parameters were validated by geometry optimization and MD simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He B et al (2009) Photolabeling probes for mapping the multiple binding poses of HDAC inhibitors. In: Abstract of papers of AACR-ACS Chemistry in Cancer Research: A Vital Partnership in Cancer Drug Discovery and Development. New Orleans, LA, p A5

  2. Kouzarides T (1999) Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9:40–48

    Article  CAS  Google Scholar 

  3. Archer SY, Hodin RA (1999) Histone acetylation and cancer. Curr Opin Genet Dev 9:171–174

    Article  CAS  Google Scholar 

  4. Cress WD, Seto E (2000) Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184:1–16

    Article  CAS  Google Scholar 

  5. Mahlknecht U, Ottmann OG, Hoelzer D (2000) When the band begins to play: histone acetylation caught in the crossfire of gene control. Mol Carcinog 27:268–271

    Article  CAS  Google Scholar 

  6. Hahnen E et al (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs 17:169–184

    Article  CAS  Google Scholar 

  7. Kozikowski AP et al (2007) Functional differences in epigenetic modulators—superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J Med Chem 50:3054–3061

    Article  CAS  Google Scholar 

  8. Carvalho ATP, Fernandes PA, Ramos MJ (2007) Parameterization of AZT—a widely used nucleoside inhibitor of HIV-1 reverse transcriptase. Int J Quantum Chem 107:292–298

    Article  CAS  Google Scholar 

  9. Cornell WD et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  10. Wang J et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  11. Dennington R II et al (2003) GaussView. Semichem Inc, Shawnee Mission, KS

    Google Scholar 

  12. Frisch MJ et al (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  13. Berendsen HJC, Spoel Dvd, Drunen Rv (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  14. Lindal E, Hess B, Spoel Dvd (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    Google Scholar 

  15. van der Spoel D et al (2001) Gromacs User Manual Version 3.0. Nijenborgh, Groningen, Netherlands. Internet: http://www.gromacs.org

  16. van der Spoel D et al (2005) Gromacs: fast, flexible and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  17. Wang J et al (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graphics Modell 25:247–260

    Article  Google Scholar 

  18. Sorin EJ, Rhee YM, Pande VS (2005) Does water play a structural role in the folding of small nucleic acids? Biophys J 88:2516–2524

    Article  CAS  Google Scholar 

  19. Jorgensen WL et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  20. Hess B et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  21. Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  22. Berendsen HJC et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  23. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  24. Anderson DWW, Rankin DWH, Robertson A (1972) Electron diffraction determination of the molecular structures of methylazide, methylisocyanate and methylisothiocyanate in the gas phase. J Mol Structure 14:385–396

    Article  CAS  Google Scholar 

  25. Winnewisser BP (1980) The substitution structure of hydrazoic acid, HNNN. J Mol Spectrosc 82:220–223

    Article  CAS  Google Scholar 

  26. Klaeboe P et al (1986) The vibrational spectra, molecular structure and conformation of organic azides. Part I. A survey. J Mol Struct 141:161–172

    Article  CAS  Google Scholar 

  27. McQuaid MJ, Sun H, Rigby D (2004) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25:61–71

    Article  CAS  Google Scholar 

  28. Cross JB et al (2002) The active site of a zinc-dependent metalloproteinase influences the computed pK(a) of ligands coordinated to the catalytic zinc ion. J Am Chem Soc 124:11004–11007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Michael Brünsteiner for critical analysis of the manuscript. This study was funded in part by the Breast Cancer Congressionally Directed Research Program of Department of Defense Idea Award BC051554 and by the National Cancer Institute/NIH grant 1R01 CA131970-01A1. We also thank OpenEye Scientific Software for providing academic license for modeling software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel A. Petukhov.

Electronic Supplementary Material

Below is the link to the electronic supplementary material:

Supplementary Information

(DOC 55.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieffet, G., Petukhov, P.A. Parameterization of aromatic azido groups: application as photoaffinity probes in molecular dynamics studies. J Mol Model 15, 1291–1297 (2009). https://doi.org/10.1007/s00894-009-0488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0488-z

Keywords

Navigation