Skip to main content
Log in

Contribution of arginine-glutamate salt bridges to helix stability

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Peptide side chain interactions were studied by molecular dynamics simulation using explicit solvent on a peptide with the sequence AAARAAAAEAAEAAAARA. Three different protonation states of the glutamic acid side chains were simulated for four 20 ns runs each, a total simulation time of 240 ns. Two different salt bridge geometries were observed and the preferred geometry was found to depend on Glu — Arg residue spacing. Stable charge clusters were also observed, particularly in the fully charged peptide. Salt bridges were selectively interrupted upon protonation, with concomitant changes in secondary structure. The fully charged peptide was highly helical between residues 9 and 13, although protonation increased helicity near the N-terminus. The contribution of salt bridges to helix stability therefore depends on both position and relative position of charged residues within a sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frauenfelder H, McMahon BH (2000) Ann Phys 9:655–667

    Article  CAS  Google Scholar 

  2. Fenimore PW, Frauenfelder H, McMahon BH, Parak FG (2002) Proc Natl Acad Sci USA 99:16047–16501

    Article  CAS  Google Scholar 

  3. Zimm BH, Bragg JK (1959) J Chem Phys 31:526–535

    Article  CAS  Google Scholar 

  4. Lifson S, Roig A (1961) J Chem Phys 34:1963–1974

    Article  CAS  Google Scholar 

  5. Schwarz G (1968) Biopolymers 6:873–897

    Article  CAS  Google Scholar 

  6. Poland D, Scheraga HA (1966) J Chem Phys 45:2071–2090

    Article  CAS  Google Scholar 

  7. Snow CD, Nguyen H, Pande VS, Gruebele M (2002) Nature 420:102–106

    Article  CAS  Google Scholar 

  8. Gnanakaran S, Garcia AE (2003) J Phys Chem B 107:12555–12557

    Article  CAS  Google Scholar 

  9. Sorin EJ, Pande VS (2005) Biophys J 88:2472–2493

    Article  CAS  Google Scholar 

  10. Shoemaker KR, Kim PS, York EJ, Stewart JM, Baldwin RL (1987) Nature 326:563–567

    Article  CAS  Google Scholar 

  11. Fairman R, Shoemaker KR, York EJ, Stewart JM, Baldwin RL (1990) Biophys Chem 37:107–119

    Article  CAS  Google Scholar 

  12. Pozo Ramajo A, Petty SA, Volk M (2006) Chem Phys 323:11–20

    Article  CAS  Google Scholar 

  13. Garcia AE, Sanbonmatsu KY (2002) Proc Natl Acad Sci USA 99:2782–2787

    Article  CAS  Google Scholar 

  14. Bierzynski A, Kim PS, Baldwin RL (1982) Proc Natl Acad Sci USA 79:2470–2474

    Article  CAS  Google Scholar 

  15. Wlodawer A, Svensson LA, Sjölin L, Gilliland GL (1988) Biochemistry 27:2705–2717

    Article  CAS  Google Scholar 

  16. Rico M, Gallego E, Santoro J, Bermejo FJ, Nieto JL, Herranz J (1984) Biochem Biophys Res Commun 123:757–763

    Article  CAS  Google Scholar 

  17. Ghosh T, Garde S, Garcia AE (2003) Biophys J 85:3187–3193

    Article  CAS  Google Scholar 

  18. Wang WZ, Lin T, Sun YC (2007) J Phys Chem B 111:3508–3514

    Article  CAS  Google Scholar 

  19. Okur A, Wickstrom L, Layten M, Geney R, Song K, Hornak V, Simmerling C (2006) J Chem Theory Comput 2:420–433

    Article  CAS  Google Scholar 

  20. Sugita Y, Okamoto Y (2005) Biophys J 88:3180–3190

    Article  CAS  Google Scholar 

  21. Monticelli L, Tieleman DP, Colombo G (2005) J Phys Chem B 109:20064–20067

    Article  CAS  Google Scholar 

  22. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comput Phys 151:283–312

    Article  Google Scholar 

  23. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  24. Feig M, Karanicolas J, Charles L, Brooks I (2004) J Mol Graphics Modell 22:377–395

    Article  CAS  Google Scholar 

  25. Zhang W, Lei H, Chowdhury S, Duan Y (2004) J Phys Chem B 108:7479–7489

    Article  CAS  Google Scholar 

  26. Williams S, Causgrove TP, Gilmanshin R, Fang KS, Callender RH, Woodruff WH, Dyer RB (1996) Biochemistry 35:691–697

    Article  CAS  Google Scholar 

  27. Okur A, Wickstrom L, Simmerling C (2008) J Chem Theory Comput 4:488–498

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Simulations were performed on the High-Performance Computing Cluster at Texas A&M University-Corpus Christi, which is supported by grant #0321218 from the National Science Foundation. This work was supported by a grant from Texas Research Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Causgrove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, K.D., Causgrove, T.P. Contribution of arginine-glutamate salt bridges to helix stability. J Mol Model 15, 1213–1219 (2009). https://doi.org/10.1007/s00894-009-0482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0482-5

Keywords

Navigation