Skip to main content
Log in

Theoretical study on the thermal decomposition of model compounds for Poly (dialkyl fumarate)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The thermal decomposition of model compounds for poly (dialkyl fumarate) was studied by using ab initio and density functional theory (DFT) calculations. To determine the most favorable reaction pathway of thermal decomposition, geometries, structures, and energies were evaluated for reactants, products, and transition states of the proposed pathways at the HF/6-31G(d) and B3LYP/6-31G(d) levels. Three possible paths (I, II and III) and subsequent reaction paths (IV and V) for the model compounds of poly (dialkyl fumarate) decomposition had been postulated. It has been found that the path (I) has the lowest activation energy 193.8 kJ mol−1 at B3LYP/6-31G(d) level and the path (I) is considered as the main path for the thermal decomposition of model compounds for poly (dialkyl fumarate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Burag KJL, Porter S, Kelam JF (2000) Biomaterials 11:2347–2359

    Article  Google Scholar 

  2. Suggs LJ, West JL, Mikos AG (1999) Biomaterials 20:683–690

    Article  CAS  Google Scholar 

  3. Fisher JP, Dean D, Mikos AG (2002) Biomaterials 23:4333–4343

    Article  CAS  Google Scholar 

  4. Cowie JMG, Haq ZBr (1977) Polym J 9:241–245

    CAS  Google Scholar 

  5. Popović IG, Katsikas L, Velicković JS (1992) J Therm Anal 38:953–959

    Article  Google Scholar 

  6. Popović IG, Katsikas L, Velicković JS (2005) Polym Degrad Stab 89:153–164

    Article  Google Scholar 

  7. Popović IG, Katsikas L, Velicković JS (2005) Polym Degrad Stab 89:165–174

    Article  Google Scholar 

  8. Grassie N (1972) Pure Appl Chem 30:119–134

    Article  CAS  Google Scholar 

  9. Grassie N, Scott G (1985) Polymer degradation and stabilization. Cambridge University Press, Cambridge, pp 1–67

    Google Scholar 

  10. David C (1975) Thermal degradation of polymers. In: Bamford CH, Tipper CFH (eds) Comprehensive chemical kinetics, vol. 14. Elsevier, Amsterdam, pp 1–174

    Chapter  Google Scholar 

  11. McNeill IC (1989) Thermal degradation. In: Allen G, Bevington JC, Eastmond GC, Ledwith A, Russo S, Sigwalt P (eds) Comprehensive polymer science, vol. 6. Pergamon Press, Oxford, pp 451–500

    Google Scholar 

  12. Otsu T, Minai H, Toyoda N, Yasuhara T (1985) Makromol Chem 12S:133–142

    Article  Google Scholar 

  13. Otsu T, Yoshioka M, Sunagawa TJ (1992) Polym Sci Part A: Polym Chem 30:1347–1354

    Article  CAS  Google Scholar 

  14. Tvaroska I, Bleha T, Valko L (1975) Polym J 7:34–43

    Article  CAS  Google Scholar 

  15. Milovanović M, Bošković R, Tošić T, Katsikas L, Popović IG (2006) Polym Degrad Stab 91:3221–3229

    Article  Google Scholar 

  16. Stevens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  Google Scholar 

  17. Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E (2005) J Am Chem Soc 127:1146–1159

    Article  CAS  Google Scholar 

  18. Gordon MH, Pople JA (1988) J Chem Phys 89:5777–5786

    Article  Google Scholar 

  19. Merino P, Tejero T, Chiacchio U, Romeo G, Rescifina A (2007) Tetrahedron 63:1448–1458

    Article  CAS  Google Scholar 

  20. Grant DM, Grassie N (1960) Polymer 1:445–455

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 2003 revision B.05. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial supports from the Open Project Program of Key Laboratory of Materials Design and Preparation Technology of Hunan Province, China (KF0802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, X., Liu, L. et al. Theoretical study on the thermal decomposition of model compounds for Poly (dialkyl fumarate). J Mol Model 15, 1043–1049 (2009). https://doi.org/10.1007/s00894-009-0457-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0457-6

Keywords