Skip to main content

Advertisement

Log in

Low-frequency vibrational modes and infrared absorbance of red, blue and green opsin

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2009

Abstract

Vibrational excitations of low-frequency collective modes are essential for functionally important conformational transitions in proteins. We carried out an analysis of the low-frequency modes in the G protein coupled receptors (GPCR) family of cone opsins based on both normal-mode analysis and molecular dynamics (MD) simulations. Power spectra obtained by MD can be compared directly with normal modes. In agreement with existing experimental evidence related to transmembrane proteins, cone opsins have functionally important transitions that correspond to approximately 950 modes and are found below 80 cm−1. This is in contrast to bacteriorhodopsin and rhodopsin, where the important low-frequency transition modes are below 50 cm−1. We find that the density of states (DOS) profile of blue opsin in a solvent (e.g. water) has increased populations in the very lowest frequency modes (<15 cm−1); this is indicative of the increased thermostability of blue opsin. From our work we found that, although light absorption behaves differently in blue, green and red opsins, their low-frequency vibrational motions are similar. The similarities and differences in the domain motions of blue, red and green opsins are discussed for several representative modes. In addition, the influence of the presence of a solvent is reported and compared with vacuum spectra. We thus demonstrate that terahertz spectroscopy of low-frequency modes might be relevant for identifying those vibrational degrees of freedom that correlate to known conformational changes in opsins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 a–c
Fig. 5
Fig. 6
Fig. 7
Fig. 8 a,b

Similar content being viewed by others

References

  1. Dauber-Osguthorpe P, Osguthorpe DJ, Stern PS, Moult J (1999) J Comput Phys 151:169–189

    Article  CAS  Google Scholar 

  2. Farantos SC (2007) CPS-IEEE Computer Society, ICCSA2007, pp 444–450

  3. Xie A, van der Meer AF, Austin RH (2002) Phys Rev Lett 88:018102–018104

    Article  Google Scholar 

  4. Moritsugu K, Miyashita O, Kidera A (2000) Phys Rev Lett 85:3970–3973

    Article  CAS  Google Scholar 

  5. Xu J, Plaxco KW, Allen SJ (2006) J Phys Chem B 110:24255–24259

    Article  CAS  Google Scholar 

  6. Ming D, Wall ME (2005) Proteins 59:697–707

    Article  CAS  Google Scholar 

  7. Leitner M, David, Havenith M, Gruebele M (2006) Int Rev Phys Chem 25:553–582

    Article  CAS  Google Scholar 

  8. Fanconi B (1973) Biopolymers 12:2759–2776

    Article  CAS  Google Scholar 

  9. Shotts WJ, Sievers AJ (1973) Chem Phys Lett 21:586–588

    Article  CAS  Google Scholar 

  10. Whitmire SE, Wolpert D, Markelz AG, Hillebrecht JR, Galan J, Birge RR (2003) Biophys J 85:1269–1277

    Article  CAS  Google Scholar 

  11. Yamamoto K, Tominaga K, Sasakawa H, Tamura A, Murakami H, Ohtake H, Sarukura N (2002) Bull Chem Soc Jpn 75:1083–1092

    Article  CAS  Google Scholar 

  12. Smith J, Kuczera K, Karplus M (1990) Proc Natl Acad Sci USA 87:1601–1605

    Article  CAS  Google Scholar 

  13. Martel P, Calmettes P, Hennion B (1991) Biophys J 59:363–374

    Article  CAS  Google Scholar 

  14. Diehl M, Doster W, Petry W, Schober H (1997) Biophys J 73:2726–2732

    Article  CAS  Google Scholar 

  15. Markelz AG, Roitberg A, Heilweil EJ (2000) Chem Phys Lett 320:42–48

    Article  CAS  Google Scholar 

  16. Xu J, Plaxco KW, Allen JS (2006) Protein Sci 15:1175–1181

    Article  CAS  Google Scholar 

  17. Zhang C, Durbin SM (2006) J Phys Chem B 110:23607–23613

    Article  CAS  Google Scholar 

  18. Hinsen K, Kneller GR (2008) Proteins Struct Funct Bioinform 70:1235–1242

    Article  CAS  Google Scholar 

  19. Hinsen K, Kneller GR (1999) J Chem Phys 111:10766–10769

    Article  CAS  Google Scholar 

  20. Krishnan M, Balasubramanian S (2003) Phys Rev B 68:064304

    Article  Google Scholar 

  21. Nina M, Roux B, Smith JC (1995) Biophys J 68:25–39

    Article  CAS  Google Scholar 

  22. Wang Q, Wong CF, Rabitz H (1998) Biophys J 75:60–69

    Article  CAS  Google Scholar 

  23. Balog E, Smith J, Perahia D (2006) Phys Chem Chem Phys 8:5543–5548

    Article  CAS  Google Scholar 

  24. Korter TM, Balu R, Campbell MB, Beard MC, Gregurick SK, Heilweil EJ (2006) Chem Phys Lett 418:65–70

    Article  CAS  Google Scholar 

  25. Keskin O, Jernigan RL, Bahar I (2000) Biophys J 78:2093–2106

    Article  CAS  Google Scholar 

  26. Mathias G, Marx D (2007) Proc Natl Acad Sci USA 104:6980–6985

    Article  CAS  Google Scholar 

  27. Rajamani R, Gao J (2002) J Comp Chem 23:96–105

    Article  CAS  Google Scholar 

  28. Pleiss J, Jähnig F (1991) Biophys J 59:795–804

    Article  CAS  Google Scholar 

  29. Šiber A (2004) Phys Rev B 70:075407

    Article  Google Scholar 

  30. Nathans J, Thomas D, Hogness DS (1986) Science 232:193–202

    Article  CAS  Google Scholar 

  31. Balu R, Zhang H, Zukowski E, Chen JY, Markelz AG, Gregurick SK (2008) Biophys J 94:3217–3226

    Article  CAS  Google Scholar 

  32. Kaledin AL, Kaledin M, Bowman JM (2006) J Chem Theory Comput 2:166–174

    Article  CAS  Google Scholar 

  33. Markelz A, Whitmire S, Hillebrecht J, Birge R (2002) Phys Med Biol 47:3797–3805

    Article  CAS  Google Scholar 

  34. Stenkamp RE, Filipek S, Driessen CAGG, Teller DC, Palczewski K (2002) Biochim Biophys Acta 1565:168–182

    Article  CAS  Google Scholar 

  35. Trabanino RJ, Vaidehi N, Goddard WA (2006) J Phys Chem B 110:17230–17239

    Article  CAS  Google Scholar 

  36. Brooks B, Karplus M (1983) Proc Natl Acad Sci USA 80:6571–6575

    Article  CAS  Google Scholar 

  37. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comp Chem 4:187–217

    Article  CAS  Google Scholar 

  38. Loccisano AE (2007) PhD thesis, Bayer School of Natural and Environmental Sciences, Duquesne University

  39. Baudry J, Hayward RL, Middendorf HD, Smith JC (1997) In: Cusack S, Buttner H, Ferrand M, Langan P, Timmins P (eds) Biological macromolecular dynamics, vol 7. Adenine, pp 49–54

  40. Mouawad L, Perahia D (2004) Biopolymers 33:599–611

    Article  Google Scholar 

  41. Kitao A, Hirata F, Go N (1991) Chem Phys 158:447–472

    Article  CAS  Google Scholar 

  42. Tama F, Sanejouand YH (2001) Protein Eng 14:1–6

    Article  CAS  Google Scholar 

  43. Maiti PK, Pascal TA, Vaidehi N, William I, Goddard A (2004) Nucleic Acids Res 32:6047–6056

    Article  CAS  Google Scholar 

  44. Dacey DM, Lee BB (1994) Nature 367:731–735

    Article  CAS  Google Scholar 

  45. Nadler W, Brunger AT, Schulten K, Karplus M (1987) Proc Natl Acad Sci USA 84:7933

    Article  CAS  Google Scholar 

  46. Hayward S, Kitao A, Go N (1995) Proteins 23:177–186

    Article  CAS  Google Scholar 

  47. Walther M, Plochocka P, Fischer B, Helm H, Jepsen UP (2002) Biopolymers 67:310–313

    Article  CAS  Google Scholar 

  48. Brooks B, Janezic D, Karplus M (1995) J Comp Chem 16:1522–1542

    Article  CAS  Google Scholar 

  49. Janezic D, Venable R, Brooks B (1995) J Comp Chem 16:1554–1566

    Article  CAS  Google Scholar 

  50. Janezic D, Brooks B (1995) J Comp Chem 16:1543–1553

    Article  CAS  Google Scholar 

  51. Pal S, Balasubramanian S, Bagchi B (2003) Phys Rev E 67:61502

    Article  Google Scholar 

  52. Wintrode PL, Zhang D, Vaidehi N, Arnold FH, Goddard WA (2003) J Mol Biol 327:745–757

    Article  CAS  Google Scholar 

  53. Schlegel B, Sippl W, Höltje H-DD (2005) J Mol Model 12:49–64

    Google Scholar 

  54. Kholmurodov K, Fel’dman T, Ostrovskii M (2007) Neurosci Behav Physiol 37:161–174

    Article  CAS  Google Scholar 

  55. Terakita A (2005) Genome Biol 6:213

  56. Terstegen F, Kolster K, Falzewski S, Buß V (2000) In: Entel P, Wolf DE (eds) Structure and dynamics of heterogeneous systems. World Scientific, Singapore, pp 26–35

  57. Fitter J, Heberle J (2000) Biophys J 79:1629–1636

    Article  CAS  Google Scholar 

  58. Fitter J, Herrmann R, Hau T, Lechner R, Dencher N (2001) Physica B 30:1

    Article  Google Scholar 

  59. van Vlijmen HWT, Karplus M (1999) J Phys Chem B 103:3009–3021

    Article  Google Scholar 

  60. Siegrist K, Bucher CR, Mandelbaum I, Walker ARH, Balu R, Gregurick SK, Plusquellic DF (2006) J Am Chem Soc 128:5764–5775

    Article  CAS  Google Scholar 

  61. Go N, Noguti T, Nishikawa T (1983) Proc Natl Acad Sci USA 80:3696–3700

    Article  CAS  Google Scholar 

  62. Reuter N, Hinsen K, Lacapere J-J (2003) Biophys J 85:2186–2197

    Article  CAS  Google Scholar 

  63. Gaillard T, Martin E, San Sebastian E, Cossio FP, Lopez X, Dejaegere A, Stote RH (2007) J Mol Biol 374:231–249

    Article  CAS  Google Scholar 

  64. Jacobs GH (1996) Proc Natl Acad Sci USA 93:577–581

    Article  CAS  Google Scholar 

  65. Kochendoerfer GG, Lin SW, Sakmar TP, Mathies RA (1999) Trends Biochem Sci 24:300–305

    Article  CAS  Google Scholar 

  66. Yuan C, Kuwata O, Liang J, Misra S, Balashov SP, Ebrey TG (1999) Biochemistry 38:4649–4654

    Article  CAS  Google Scholar 

  67. Zhang D, McCammon JA (2005) PLoS Comput Biol 1:e62

    Article  Google Scholar 

  68. Hope AJ, Partridge JC, Dulai KS, Hunt DM (1997) Proc Biol Sci R Soc 264:155–163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft via the Graduiertenkolleg 792, and thank R. Diller for valuable discussions on the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert M. Urbassek.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00894-009-0577-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirumuruganandham, S.P., Urbassek, H.M. Low-frequency vibrational modes and infrared absorbance of red, blue and green opsin. J Mol Model 15, 959–969 (2009). https://doi.org/10.1007/s00894-008-0446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0446-1

Keywords

PACS numbers

Navigation