Skip to main content

Advertisement

Log in

De(side chain) model of epothilone: bioconformer interconversions DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using ab initio methods, we have studied conformations of the de(sidechain)de(dioxy)difluoroepothilone model to quantify the effect of stability change between the exo and endo conformers of the epoxy ring. The DFT minimization of the macrolactone ring reveals four low energy conformers, although MP2 predicted five stable structures. The model tested with DFT hybride functional (B3LYP/6–31+G(d,p)) exhibits the global minimum for one of the exo forms (C), experimentally observed in the solid state, but unexpectedly with the MP2 electron correlation method for the virtual endo form (W). Using the QST3 technique, several pathways were found for the conversion of the low energy conformers to the other low energy exo representatives, as well as within the endo analog subset. The potential energy relationships obtained for several exo forms suggest a high conformational mobility between three, experimentally observed, conformers. The high rotational barrier, however, excludes direct equilibrium with experimental EC-derived endo form S. The highest calculated transition state for the conversion of the most stable exo M interligand to the endo S form is approximately a 28 kcal/mol above the energy of the former. The two-step interconversion of the exo H conformer to the endo S requires at least 28 kcal/mol. Surprisingly, we found that the transition state energy of the H form to the virtual endo W has the acceptable value of about 9 kcal/mol and the next energy barrier for free interconversion of endo W to endo S is 13 kcal/mol.

DFT Model of Epothilone Interconversions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Altmann K-H, Gertsch J (2007) Anticancer drugs from nature-natural products as a unique source of new microtubule-stabilizing agents. Nat Prod Rep 24:327–357

    Article  CAS  Google Scholar 

  2. Jordan MA (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anti-Cancer Agents 2:1–17

    Article  CAS  Google Scholar 

  3. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  CAS  Google Scholar 

  4. Snyder JP, Nettles JH, Cornett B, Downing KH, Nogales E (2001) The binding conformation of Taxol in β-tubulin: a model based on electron crystallographic density. Proc Natl Acad Sci USA 98:5312–5316

    Article  CAS  Google Scholar 

  5. Löwe J, Li H, Downing KH, Nogales E (2001) Refined structure of α-beta tubulin from zinc-induced sheets stabilized with taxol. J Mol Biol 313:1045–1057

    Article  Google Scholar 

  6. Johnson SA, Alcaraz AA, Snyder JP (2005) T-Taxol and the electron crystallographic density in β-tubulin. Org Lett 7:5549–5552

    Article  CAS  Google Scholar 

  7. Kingston DGI, Bane S, Snyder JP (2005) The taxol pharmacophore and the T-taxol bridging principle. Cell Cycle 4:279–289

    CAS  Google Scholar 

  8. DE 4138042 1993 (1993) Chem Abstr 120:52841

  9. Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H (1996) Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). J Antibiot 49:560–563

    CAS  Google Scholar 

  10. Höfle G, Bedorf N, Steinmetz H, Schomburg D, Gerth K, Reichenbach H (1996) Epothilone A and B - novel 16-membered macrolides with cytotoxic activity: isolation, crystal structure, and conformation in solution. Angew Chem Int Ed 35:1567–1569

    Article  Google Scholar 

  11. Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55:2325–2333

    CAS  Google Scholar 

  12. Nicolaou KC, Roschangar F, Vourloumis D (1998) Chemical biology of epothilones. Angew Chem Int Ed 37:2014–2045

    Article  CAS  Google Scholar 

  13. Nicolaou KC, Ritzén A, Namoto K (2001) Recent developments in the chemistry, biology and medicine of the epothilones. Chem Commun 1523–1535

  14. Altmann K-H (2004) The merger of natural product synthesis and medicinal chemistry: on the chemistry and chemical biology of epothilones. Org Biomol Chem 2:2137–2152

    Article  CAS  Google Scholar 

  15. Borzilleri RM, Vite GD (2002) Epothilones: new tubulin polymerization agents in preclinical and clinical development. Drugs Fut 27:1149–1163

    Article  CAS  Google Scholar 

  16. Altmann K-H (2005) Recent developments in the chemical biology of epothilones. Curr Pharm Des 11:1595–1613

    Article  CAS  Google Scholar 

  17. Borzilleri RM, Zheng X, Schmidt RJ, Johnson JA, Kim S-H, DiMarco JD, Fairchild CR, Gougoutas JZ, Lee FYF, Long BH, Vite GD (2000) A novel application of a Pd(0)-catalyzed nucleophilic substitution reaction to the regio- and stereoselective synthesis of lactam analogues of the epothilone natural products. J Am Chem Soc 122:8890–8897

    Article  CAS  Google Scholar 

  18. Gianni L (2007) Ixabepilone and the narrow path to developing new cytotoxic drugs. J Clin Oncol 25:3389–3391

    Article  Google Scholar 

  19. De Jonge M, Verweij J (2005) The epothilone dilemma. J Clin Oncol 23:9048–9050

    Article  Google Scholar 

  20. Nettles JH, Li H, Cornett B, Krahn JM, Snyder JP, Downing KH (2004) The binding mode of epothilone A on α,β-tubulin by electron crystallography. Science 305:866–869

    Article  CAS  Google Scholar 

  21. Winkler JD, Axelsen PH (1996) A model for the taxol (paclitaxel)/epothilone pharmacophore. Bioorg Med Chem Lett 6:2963–2966

    Article  CAS  Google Scholar 

  22. Ojima I, Chakravarty S, Inoue T, Lin S, He L, Horwitz SB, Kuduk SD, Danishefsky SJ (1999) A common pharmacophore for cytotoxic natural products that stabilize microtubules. Proc Natl Acad Sci USA 96:4256–4261

    Article  CAS  Google Scholar 

  23. Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T (2000) A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 97:2904–2909

    Article  CAS  Google Scholar 

  24. He L, Jagtap PG, Kingston DG I, Shen H-J, Orr GA, Horwitz SB (2000) A common pharmacophore for taxol and the epothilones based on the biological activity of a taxane molecule lacking a C-13 side chain. Biochemistry 39:3972–3978

    Article  CAS  Google Scholar 

  25. Lee KW, Briggs JM (2001) Comparative molecular field analysis (CoMFA) study of epothilones-tubulin depolymerization inhibitors: pharmacophore development using 3D QSAR methods. J Comput-Aided Mol Design 15:41–55

    Article  CAS  Google Scholar 

  26. Manetti F, Maccari L, Corelli F, Botta M (2004) 3D QSAR models of interactions between β-tubulin and microtubule stabilizing antimitotic agents (MSAA): a survey on taxanes and epothilones. CurrTop MedChem 4:203–217

    CAS  Google Scholar 

  27. Day BW (2000) Mutants yield a pharmacophore model for the tubulin-paclitaxel binding site. Trends Pharmacol Sci 21:321–323

    Article  CAS  Google Scholar 

  28. Taylor RE, Zajicek J (1999) Conformational properties of epothilone. J Org Chem 64:7224–7228

    Article  CAS  Google Scholar 

  29. Carlomagno T, Blommers MJJ, Meiler J, Jahnke W, Schupp T, Petersen F, Schinzer D, Altmann K-H, Griesinger C (2003) The high-resolution solution structure of epothilone a bound to tubulin: an understanding of the structure-activity relationships for a powerful class of antitumor agents. Angew Chem Int Ed 42:2511–2515

    Article  CAS  Google Scholar 

  30. Carlomagno T, Sánchez VM, Blommers MJJ, Griesinger C (2003) Derivation of dihedral angles from CH-CH dipolar-dipolar cross-correlated relaxation rates: a C-C torsion involving a quaternary carbon atom in epothilone A bound to tubulin. Angew Chem Int Ed Engl 42:2515–2517

    Article  CAS  Google Scholar 

  31. Reese M, Sánchez-Pedregal VM, Kubicek K, Meiler J, Blommers MJJ, Griesinger C, Carlomagno T (2007) Structural basis of the activity of the microtubule-stabilizing agent epothilone a studied by NMR spectroscopy in solution. Angew Chem Int Ed 46:1864–1868

    Article  CAS  Google Scholar 

  32. Ballone P, Marchi M (1999) A density functional study of a new family of anticancer drugs: paclitaxel, taxotere, epothilone, and discodermolide. J Phys Chem A 103:3097–3102

    Article  CAS  Google Scholar 

  33. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  34. Jolly WL, Perry WB (1973) Estimation of atomic charges by an electronegativity equalization procedure calibrated with core binding energies. J Am Chem Soc 95:5442–5450

    Article  CAS  Google Scholar 

  35. Jolly WL, Perry WB (1974) Calculation of atomic charges by an electronegativity equalization procedure. Inorg Chem 13:2686–2692

    Article  CAS  Google Scholar 

  36. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity, 4th edn. Harper Collins, New York

    Google Scholar 

  37. James AM, Lord MP (1992) Macmillan’s chemical and physical data. Macmillan, London

    Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 Revision C02 Gaussian Inc, Wallingford CT

  39. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  40. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  41. Wang M, Xia X, Kim Y, Hwang D, Jansen JM, Botta M, Liotta DC, Snyder JP (1999) A unified and quantitative receptor model for the microtubule binding of paclitaxel and epothilone. Org Lett 1:43–46

    Article  CAS  Google Scholar 

  42. Manetti F, Forli S, Maccari L, Corelli F, Botta M (2003) 3D QSAR studies of the interaction between β-tubulin and microtubule stabilizing antimitotic agents (MSAA). A combined pharmacophore generation and pseudoreceptor modeling approach applied to taxanes and epothilones. Il Farmaco 58:357–361

    Article  CAS  Google Scholar 

  43. CSD: The Cambridge Structural Database Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB21EZ UK, www.ccdc.cam.ac.uk

  44. Nagano S, Li H, Shimizu H, Nishida C, Ogura H, Ortiz de Montellano PR, Poulos TL (2003) Crystal structures of epothilone D-bound, epothilone B-bound, and substrate-free forms of cytochrome P450epoK. J Biol Chem 278:44886–44893

    Article  CAS  Google Scholar 

  45. Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods to find transition states. Isr J Chem 33:449–454

    CAS  Google Scholar 

  46. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  47. Taylor RE, Chen Y, Beatty A, Myles DC, Zhou Y (2003) Conformation-activity relationships in polyketide natural products: a new perspective on the rational design of epothilone analogues. J Am Chem Soc 125:26–27

    Article  CAS  Google Scholar 

  48. Heinz DW, Schubert W-D, Höfle G (2005) Much anticipated - the bioactive conformation of epothilone and its binding to tubulin. Angew Chem Int Ed 44:1298–1301

    Article  CAS  Google Scholar 

  49. Abraham RJ, Castellazzi I, Sancassan F, Smith TAD (1999) Conformational analysis, Part 31.1 A theoretical and lanthanide induced shift (LIS) investigation of the conformations of some epoxides. J Chem Soc Perkin Trans 2:99–106

    Google Scholar 

  50. Vila A, Mosquera RA (2003) AIM study on the protonation of methyl oxiranes. Chem Phys Lett 371:540–547

    Article  CAS  Google Scholar 

  51. Coxon JM, Thorpe AJ, Smith WB (1999) Potential energy surface for the acid- and BF3-catalyzed rearrangement of methylpropene oxide. J Org Chem 64:9575–9586

    Article  CAS  Google Scholar 

  52. Carlier PR, Deora N, Crawford TD (2006) Protonated 2-methyl-1,2-epoxypropane: a challenging problem for density functional theory. J Org Chem 71:1592–1597

    Article  CAS  Google Scholar 

  53. Schweizer WB, Dunitz JD (1982) Structural characteristics of the carboxylic ester group. Helv Chim Acta 65:1547–1554

    Article  CAS  Google Scholar 

  54. Hammond GS (1955) A correlation of reaction rates. J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  55. Smith MB, March J (2007) March’s advanced organic chemistry: reactions mechanisms and structure, chapter 6, 6th edn. Wiley, New York

    Google Scholar 

  56. Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds, chapter 11. Wiley, New York

    Google Scholar 

  57. Cicero DO, Barbato G, Bazzo R (1995) NMR analysis of molecular flexibility in solution: a new method for the study of complex distributions of rapidly exchanging conformations. application to a 13-residue peptide with an 8-residue loop. J Am Chem Soc 117:1027–1033

    Article  CAS  Google Scholar 

  58. Erdelyi M, Pfeiffer B, Hauenstein K, Fohrer J, Gertsch J, Altmann K-H, Carlomagno T (2008) Conformational preferences of natural and C3-Modified epothilones in aqueous solution. J Med Chem 51:1469–1473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Poznan University of Technology /DS 32/045/2007. The authors are grateful to Professor M. Botta (Università degli Studi di Siena, Siena, Italy), Professor R. E. Taylor (University of Notre Dame, Notre Dame, IN), Professor J. P. Snyder and Dr M. Wang (Emory University, Atlanta, GA), Professor J. Meiler (Vanderbilt University, Nashville, TN) for providing original coordinates of conformers to prepare initial guesses for the generation of epothilone representatives. We also acknowledge Poznanskie Centrum Superkomputerowo-Sieciowe, Poland for computational time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Lozynski.

Supporting information available

Tables containing energies for the optimized conformers, intermediates and transition states of epothilone A 2 derivative and their other structural data are available free of charge at doi://10.1007/s00894-008-0428-3 or from the authors.

ESM 1

(PDF 79.8 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusinska-Roszak, D., Lozynski, M. De(side chain) model of epothilone: bioconformer interconversions DFT study. J Mol Model 15, 859–869 (2009). https://doi.org/10.1007/s00894-008-0428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0428-3

Keywords