Skip to main content
Log in

Vicinity analysis: a methodology for the identification of similar protein active sites

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Vicinity analysis (VA) is a new methodology developed to identify similarities between protein binding sites based on their three-dimensional structure and the chemical similarity of matching residues. The major objective is to enable searching of the Protein Data Bank (PDB) for similar sub-pockets, especially in proteins from different structural and biochemical series. Inspection of the ligands bound in these pockets should allow ligand functionality to be identified, thus suggesting novel monomers for use in library synthesis. VA has been developed initially using the ATP binding site in kinases, an important class of protein targets involved in cell signalling and growth regulation. This paper defines the VA procedure and describes matches to the phosphate binding sub-pocket of cyclin-dependent protein kinase 2 that were found by searching a small test database that has also been used to parameterise the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissag H, Shindyalov IN, Bourne P (2000) Nucleic Acids Res 125:235–242. doi:10.1093/nar/28.1.235

    Article  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  3. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) Structure 5:1093–1108. doi:10.1016/S0969-2126(97)00260-8

    Article  CAS  Google Scholar 

  4. Schmitt S, Kuhn D, Klebe G (2002) J Mol Biol 323:387–406. doi:10.1016/S0022-2836(02)00811-2

    Article  CAS  Google Scholar 

  5. Guoguang L (2000) J Appl Cryst 1:176–183

    Google Scholar 

  6. Sacan A, Oztuck O, Feratosmanoglu H, Wang Y (2007) Bioinformatics 23:709–716. doi:10.1093/bioinformatics/btl685

    Article  CAS  Google Scholar 

  7. Wei L, Altman RB (1998) Pac Symp Biocomput 3:497–508

    Google Scholar 

  8. Hendlich M, Bergner A, Gunther J, Klebe G (2003) J Mol Biol 326:607–620. doi:10.1016/S0022-2836(02)01408-0

    Article  CAS  Google Scholar 

  9. Spriggs VR, Artymiuk PJ, Willett P (2003) J Chem Inf Comput Sci 43:412–421. doi:10.1021/ci0255984

    CAS  Google Scholar 

  10. Ullman J (1976) J ACM 23:31–42. doi:10.1145/321921.321925

    Article  Google Scholar 

  11. Kleywegt GJ (1999) J Mol Biol 285:1887–1897. doi:10.1006/jmbi.1998.2393

    Article  CAS  Google Scholar 

  12. Samudrala R, Moult J (1998) J Mol Biol 279:287–302. doi:10.1006/jmbi.1998.1689

    Article  CAS  Google Scholar 

  13. Hofbauer C, Lohninger H, Aszódi A (2004) J Chem Inf Comput Sci 44:837–847. doi:10.1021/ci0342371

    CAS  Google Scholar 

  14. Brooks BR, Bruccoleri RE, Olafson DJ, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217. doi:10.1002/jcc.540040211

    Article  CAS  Google Scholar 

  15. Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M (1999) Bioinformatics 15:327–332. doi:10.1093/bioinformatics/15.4.327

    Article  CAS  Google Scholar 

  16. Helberg S, Sjostrom M, Skagerberg B, Wold S (1987) J Med Chem 30:1126–1135. doi:10.1021/jm00390a003

    Article  Google Scholar 

  17. Gardiner EJ, Willet P (2000) J Chem Inf Comput Sci 40:273–279. doi:10.1021/ci990262o

    CAS  Google Scholar 

  18. Harary F (1994) Graph theory. Addison-Wesley, Reading, MA

    Google Scholar 

  19. Bron C, Kerbosch J (1973) Commun ACM 16:575–577. doi:10.1145/362342.362367

    Article  Google Scholar 

  20. SYBYL, Tripos Associates, St Louis, MO

  21. Holm L, Park J (2000) Bioinformatics 16:566–567. doi:10.1093/bioinformatics/16.6.566

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs V.S. Rose and C.J. Harris for helpful comments and support for this work. A.M.G. acknowledges financial support from Biofocus DPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Hudson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGready, A., Stevens, A., Lipkin, M. et al. Vicinity analysis: a methodology for the identification of similar protein active sites. J Mol Model 15, 489–498 (2009). https://doi.org/10.1007/s00894-008-0424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0424-7

Key Words

Navigation