Skip to main content
Log in

Chemical function-based pharmacophore generation of selective κ-opioid receptor agonists by catalyst and phase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Two chemical function-based pharmacophore models of selective κ-opioid receptor agonists were generated by using two different programs: Catalyst/HypoGen and Phase. The best output hypothesis (Hypo1) of HypoGen consisted of five features: one hydrogen-bond acceptor (HA), three hydrophobic points (HY), and one positive ionizable function (PI). The highest scoring model (Hypo2) produced by Phase comprised four features: one acceptor (A), one positive ionizable function (P), and two aromatic ring features (R). These two models (Hypo1 and Hypo2) were then validated by test set prediction and enrichment factors. They were shown to be able to identify highly potent κ-agonists within a certain range, and satisfactory enrichments were achieved. The features of these two pharmacophore models were similar and consistent with experiment data. The models produced here were also generally in accord with other reported models. Therefore, our pharmacophore models were considered as valuable tools for 3D virtual screening, and could be useful for designing novel κ-agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schwalbe H, Wess G (2002) Chem Bio Chem 3:915–919. doi:10.1002/1439-7633(20021004)3:10<915::AID-CBIC915>3.0.CO;2-L

    Google Scholar 

  2. Gether U (2000) Endocr Rev 21:90–113. doi:10.1210/er.21.1.90

    Article  CAS  Google Scholar 

  3. Ulloa-Aguirre A, Stanislaus D, Janovick JA, Conn PM (1999) Arch Med Res 30:420–435. doi:10.1016/S0188-0128(99)00041-X

    Article  CAS  Google Scholar 

  4. Kieffer BL (1995) Cell Mol Neurobiol 15:615–635. doi:10.1007/BF02071128

    Article  CAS  Google Scholar 

  5. Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) Pharmacol Rev 48:567–592

    CAS  Google Scholar 

  6. DeHaven-Hudkins DL, Dolle RE (2004) Curr Pharm Des 10:743–757. doi:10.2174/1381612043453036

    Article  CAS  Google Scholar 

  7. Holzgrabe U, Brandt W (2003) J Med Chem 46:1383–1389. doi:10.1021/jm0210360

    Article  CAS  Google Scholar 

  8. Soukara S, Maier CA, Predoiu U, Ehret A, Jackisch R, Wunsch B (2001) J Med Chem 44:2814–2826. doi:10.1021/jm0108395

    Article  CAS  Google Scholar 

  9. Szmuszkovicz J, Von Voigtlander PF (1982) J Med Chem 25:1125–1126. doi:10.1021/jm00352a005

    Article  CAS  Google Scholar 

  10. Costello GF, James R, Shaw JS, Slater AM, Stutchbury NCJ (1991) J Med Chem 34:181–189. doi:10.1021/jm00105a027

    Article  CAS  Google Scholar 

  11. Chu GH, Gu M, Cassel JA, Belanger S, Graczyk TM, DeHaven RN, Conway-James N, Koblish M, Little PJ, DeHaven-Hudkins DL, Dolle RE (2007) Bioorg Med Chem Lett 17:1951–1955. doi:10.1016/j.bmcl.2007.01.053

    Article  CAS  Google Scholar 

  12. Chu GH, Gu M, Cassel JA, Belanger S, Stabley GJ, DeHaven RN, Conway-James N, Koblish M, Little PJ, DeHaven-Hudkins DL, Dolle RE (2006) Bioorg Med Chem Lett 16:645–648. doi:10.1016/j.bmcl.2005.10.034

    Article  CAS  Google Scholar 

  13. Le Bourdonnec B, Ajello CW, Seida PR, Susnow RG, Cassel JA, Belanger S, Stabley GJ, DeHaven RN, DeHaven-Hudkins DL, Dolle RE (2005) Bioorg Med Chem Lett 15:2647–2652. doi:10.1016/j.bmcl.2005.03.020

    Article  Google Scholar 

  14. Chu GH, Gu M, Cassel JA, Belanger S, Graczyk TM, DeHaven RN, Conway-James N, Koblish M, Little PJ, DeHaven-Hudkins DL, Dolle RE (2005) Bioorg Med Chem Lett 15:5114–5119. doi:10.1016/j.bmcl.2005.08.094

    Article  CAS  Google Scholar 

  15. Kumar V, Guo D, Cassel JA, Daubert JD, Dehaven RN, Dehaven-Hudkins DL, Gauntner EK, Gottshall SL, Greiner SL, Koblish M, Little PJ, Mansson E, Maycock AL (2005) Bioorg Med Chem Lett 15:1091–1095. doi:10.1016/j.bmcl.2004.12.018

    Article  CAS  Google Scholar 

  16. Tuthill PA, Seida PR, Barker W, Cassel JA, Belanger S, DeHaven RN, Koblish M, Gottshall SL, Little PJ, DeHaven-Hudkins DL, Dolle RE (2004) Bioorg Med Chem Lett 14:5693–5697. doi:10.1016/j.bmcl.2004.08.041

    Article  CAS  Google Scholar 

  17. Kumar V, Marella MA, Cortes-Burgos L, Chang AC, Cassel JA, Daubert JD, DeHaven RN, DeHaven-Hudkins DL, Gottshall SL, Mansson E, Maycock AL (2000) Bioorg Med Chem Lett 10:2567–2570. doi:10.1016/S0960-894X(00)00519-9

    Article  CAS  Google Scholar 

  18. Kurogi Y, Guner OF (2001) Curr Med Chem 8:1035–1055

    CAS  Google Scholar 

  19. Li H, Sutter J, Hoffman R, HypoGen (2000) An automated system for generating 3D predictive pharmacophore models. In: Guner O (ed) Pharmacophore perception, development and use in drug design. International University Line, La Jolla, CA

  20. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) J Comput Aided Mol Des 20:647–671. doi:10.1007/s10822-006-9087-6

    Article  CAS  Google Scholar 

  21. Phase 2.0, Schrodinger, LLC: New York

  22. Fischer R (1966) The principle of experimentation, illustrated by a PSYcho-Physical Experiment. Hafner, New York, Chap. II

  23. CATALYST 4.10, Accelrys, http://www.accelrys.com: San Diego, CA

  24. Funk OF, Kettmann V, Drimal J, Langer T (2004) J Med Chem 47:2750–2760. doi:10.1021/jm031041j

    Article  CAS  Google Scholar 

  25. Krovat EM, Langer T (2003) J Med Chem 46:716–726. doi:10.1021/jm021032v

    Article  CAS  Google Scholar 

  26. Tafi A, Costi R, Botta M, Santo R, Corelli F, Massa S, Ciacci A, Manetti F, Artico M (2002) J Med Chem 45:2720–2732. doi:10.1021/jm011087h

    Article  CAS  Google Scholar 

  27. Sybyl 7.0, Triops, St Louis, MO

  28. Martin YC Distance comparisons (DISCO): a new strategy for examining 3D structure-activity relationships. American Chemical Society, Washington DC, 1995

  29. Jones G, Willett P, Glen RC (1995) J Comput Aided Mol Des 9:532–549. doi:10.1007/BF00124324

    Article  CAS  Google Scholar 

  30. Richmond NJ, Abrams CA, Wolohan PR, Abrahamian E, Willett P, Clark RD (2006) J Comput Aided Mol Des 20:567–587. doi:10.1007/s10822-006-9082-y

    Article  CAS  Google Scholar 

  31. Ockham WO English philosopher and Franciscan Monk, 1285, see http://www.britannica.com/EBchecked/topic/424706/Ockhams-razor

  32. de Costa BR, Bowen WD, Hellewell SB, George C, Rothman RB, Reid AA, Walker JM, Jacobson AE, Rice KC (1989) J Med Chem 32:1996–2002. doi:10.1021/jm00128a050

    Article  Google Scholar 

  33. Halfpenny PR, Horwell DC, Hughes J, Hunter JC, Rees DC (1990) J Med Chem 33:286–291. doi:10.1021/jm00163a047

    Article  CAS  Google Scholar 

  34. de Costa BR, Radesca L, Di Paolo L, Bowen WD (1992) J Med Chem 35:38–47. doi:10.1021/jm00079a004

    Article  Google Scholar 

  35. Thirstrup K, Hjorth SA, Schwartz TW (1996) In: Investigation of the binding pocket in the kappa opioid receptor by a combination of alanine substitutions and steric hindrance mutagenesis. 27th Meeting of the International Narcotics Research Conference, poster M30, 21–26 July 1996, Long Beach, CA

  36. Kong H, Raynor K, Reisine T (1994) Reg Pept 54:155–156. doi:10.1016/0167-0115(94)90437-5

    Article  CAS  Google Scholar 

  37. Surratt CK, Johnson PS, Moriwaki A, Seidleck BK, Blaschak CJ, Wang JB, Uhl GR (1994) J Biol Chem 269:20548–20553

    CAS  Google Scholar 

  38. Uhl GR, Childers S, Pasternak G (1994) Trends Neurosci 17:89–93. doi:10.1016/0166-2236(94)90110-4

    Article  CAS  Google Scholar 

  39. Lavecchia A, Greco G, Novellino E, Vittorio F, Ronsisvalle G (2000) J Med Chem 43:2124–2134. doi:10.1021/jm991161k

    Article  CAS  Google Scholar 

  40. Singh N, Nolan TL, McCurdy CR (2008) J Mol Graph Model. doi:10.1016/j. jmgm.2008.03.007

  41. Singh N, Cheve G, Mccurdy CR, Ferguson DM (2006) J Comput Aided Mol Des 20:471–493. doi:10.1007/s10822-006-9067-x

    Article  CAS  Google Scholar 

  42. Flizola M, Villar HO, Loew GH (2001) J Comput Aided Mol Des 15:297–307. doi:10.1023/A:1011187320095

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the software support for Catalyst from Prof. Hualiang Jiang of the Shanghai Institute of Materia Medica, CAS. This work was supported by National Natural Science Foundation of China (Grant 30600785), Shanghai Rising-Star Program (Grant 07QA14016), and Key 863 High-Tech Program (Grant 2006AA020404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixia Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Liu, G. & Tang, Y. Chemical function-based pharmacophore generation of selective κ-opioid receptor agonists by catalyst and phase. J Mol Model 15, 1027–1041 (2009). https://doi.org/10.1007/s00894-008-0418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0418-5

Keywords

Navigation