Journal of Molecular Modeling

, 15:133 | Cite as

Molecular dynamic simulations of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor

  • Freddie R. SalsburyJr.
  • Michael W. Crowder
  • Stephen F. Kingsmore
  • James J. A. Huntley
Original Paper

Abstract

The beta-lactam-based antibiotics are among the most prescribed and effective antibacterial agents. Widespread use of these antibiotics, however, has created tremendous pressure for the emergence of resistance mechanisms in bacteria. The most common cause of antibiotic resistance is bacterial production of actamases that efficiently degrade antibiotics. The metallo-beta-lactamases are of particular clinical concern due to their transference between bacterial strains. We used molecular dynamics (MD) simulations to further study the conformational changes that occur due to binding of an inhibitor to the dicanzinc metallo-beta-lactamase from Bacteroides fragilis. Our studies confirm previous findings that the major flap is a major source of plasticity within the active site, therefore its dynamic response should be considered in drug development. However, our results also suggest the need for care in using MD simulations in evaluating loop mobility, both due to relaxation times and to the need to accurately model the zinc active site. Our study also reveals two new robust responses to ligand binding. First, there are specific localized changes in the zinc active site—a local loop flip—due to ligand intercalation that may be critical to the function of this enzyme. Second, inhibitor binding perturbs the dynamics throughout the protein, without otherwise perturbing the enzyme structure. These dynamic perturbations radiate outward from the active site and their existence suggests that long-range communication and dynamics may be important in the activity of this enzyme.

Keywords

Drug resistance Long-rang communication Metallo-beta-lactamases Molecular dynamics 

Supplementary material

894_2008_410_Fig1_ESM.gif (820 kb)
Figure S1

Structural comparison of Apo, pose 2 and the structure with the longest zinc–zinc distance. The centroids of the most populated clusters in the apo (gray), and pose 2 (red) simulations are depicted along with the structure with the largest zinc–zinc distance (orange), which is found in pose 2. The protein is depicted in the new cartoon representation, and the zinc atoms in vdW representation (GIF 819 KB).

894_2008_410_Fig1_ESM.tif (721 kb)
(TIF 721 KB)
894_2008_410_Fig2_ESM.gif (1.1 mb)
Figure S2

Detailed structural comparison of Apo, pose 2 and the structure with the longest zinc–zinc distance. As Fig. S1, but zoomed in with all atoms within 5 Å of the zinc atoms depicted in a bonded representation to highlight the loop flip and the slight structural changes at the zinc site (GIF 109 MB).

894_2008_410_Fig2_ESM.tif (1.2 mb)
(TIF 115MB)

References

  1. 1.
    Bush K (1998) Clin Infect Dis 27[Suppl 1]:S48–S53Google Scholar
  2. 2.
    Bush K, Mobashery S (1998) In: Rosen PB, Mobashery S (eds) Resolving the antibiotic paradox: progress in understanding drug resistance and development of new antibiotics. Kluwer/Plenum, New York, pp 71–98Google Scholar
  3. 3.
    Knowles JR (1985) Acc Chem Res 18:97–104. doi:10.1021/ar00112a001 CrossRefGoogle Scholar
  4. 4.
    Knowles JR (1980) In: Brodbeck U (ed) Enzyme inhibitors. Verlag Chemie, Weinheim, pp 163–167Google Scholar
  5. 5.
    Neu HC (1992) Science 257(5073):1064–1073. doi:10.1126/science.257.5073.1064 CrossRefGoogle Scholar
  6. 6.
    Ash C (1996) Trends Microbiol 4(10):371–372. doi:10.1016/0966-842X(96)30028-0 CrossRefGoogle Scholar
  7. 7.
    Wilkins AS (1996) Bioessays 18(10):847–848. doi:10.1002/bies.950181012 CrossRefGoogle Scholar
  8. 8.
    Levy SB (1998) Sci Am 3:46–53Google Scholar
  9. 9.
    Barbosa TM, Levy SB (2000) Drug Resist Updat 3:303–311. doi:10.1054/drup.2000.0167 CrossRefGoogle Scholar
  10. 10.
    Ambler RP (1980) Philos Trans R Soc Lond B Biol Sci 289:321–331. doi:10.1098/rstb.1980.0049 CrossRefGoogle Scholar
  11. 11.
    Jaurin B, Grundstrom T (1981) Proc Natl Acad Sci USA 78:4897–4901. doi:10.1073/pnas.78.8.4897 CrossRefGoogle Scholar
  12. 12.
    Mederios A (1984) Br Med Bull 40:18–27Google Scholar
  13. 13.
    Bush K (1989) Antimicrob Agents Chemother 33(3):259–263Google Scholar
  14. 14.
    Carfi A, Duee E, Galleni M, Frère JM, Dideberg O (1998) Acta Crystallogr D Biol Crystallogr 54(Pt 3):313–323. doi:10.1107/S0907444997010627 CrossRefGoogle Scholar
  15. 15.
    Toney JH, Moloughney JG (2004) Curr Opin Investig Drugs 5(8):823–826Google Scholar
  16. 16.
    Garau G, Garcia-Saez I, Bebrone C, Anne C, Mercuri P, Galleni M et al (2004) Antimicrob Agents Chemother 48(7):2347–2349. doi:10.1128/AAC.48.7.2347-2349.2004 CrossRefGoogle Scholar
  17. 17.
    Ito H, Arakawa Y, Ohsuka S, Wacharotayankun R, Kato N, Ohta M (1995) Antimicrob Agents Chemother 39(4):824–829Google Scholar
  18. 18.
    Levy SB, Miller A (1989) Gene transfer in the enviroment. McGraw Hill, New YorkGoogle Scholar
  19. 19.
    Senda K, Arakawa Y, Ichiyama S, Nakashima K, Ito H, Ohsuka S, Shimokata K, Kato N, Ohta MJ (1996) Clin Microbiol 34:2909–2913Google Scholar
  20. 20.
    Levy SB, Marshall B (2004) Nat Med 10(12):S122–S129. doi:10.1038/nm1145 CrossRefGoogle Scholar
  21. 21.
    Bush K, Miller GH (1998) Curr Opin Microbiol 1:509–515. doi:10.1016/S1369-5274(98)80082-9 CrossRefGoogle Scholar
  22. 22.
    Tsakris A, Ikonomidis A, Spanakis N, Poulou A, Pournaras S, Antimicrob J (2007) Chemother 59(4):739–741Google Scholar
  23. 23.
    Mendes RE, Toleman MA, Ribeiro J, Sader HS, Jones RN, Walsh TR (2004) Antimicrob Agents Chemother 48(12):4693–4702. doi:10.1128/AAC.48.12.4693-4702.2004 CrossRefGoogle Scholar
  24. 24.
    Riccio ML, Pallechi L, Fontana R, Rossolini GM (2001) Antimicrob Agents Chemother 45(4):1249–1253. doi:10.1128/AAC.45.4.1249-1253.2001 CrossRefGoogle Scholar
  25. 25.
    Gales AC, Menezes LC, Silbert S, Sader HS, Antimicrob J (2003) Chemother 52(4):699–702Google Scholar
  26. 26.
    Giakkoupi P, Petrikkos G, Tzouvelekis LS, Tsonas S, Legakis NJ, Vatopoulos AC (2003) J Clin Microbiol 41(2):822–825. doi:10.1128/JCM.41.2.822-825.2003 CrossRefGoogle Scholar
  27. 27.
    Giakkoupi P, Xanthaki A, Kanelopoulou M, Vlahaki A, Miriagou V, Kontou S et al (2003) Clin Microbiol 41(8):3893–3896. doi:10.1128/JCM.41.8.3893-3896.2003 CrossRefGoogle Scholar
  28. 28.
    Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y (2003) Emerg Infect Dis 9(7):868–871Google Scholar
  29. 29.
    Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Structure 4:823–836. doi:10.1016/S0969-2126(96)00089-5 CrossRefGoogle Scholar
  30. 30.
    Walsh TR (2005) Clin Microbiol Infect 11(Suppl 6):2–9. doi:10.1111/j.1469-0691.2005.01264.x CrossRefGoogle Scholar
  31. 31.
    Walsh TR, Neville WA, Haran MH, Tolson D, Payne DJ, Bateson JH et al (1998) Antimicrob Agents Chemother 42(2):436–439Google Scholar
  32. 32.
    Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ et al (1998) J Mol Biol 284:125–136. doi:10.1006/jmbi.1998.2148 CrossRefGoogle Scholar
  33. 33.
    Crowder MW, Wang Z, Franklin SL, Zovinka EP, Benkovic SJ (1996) Biochemistry 35:12126–12132. doi:10.1021/bi960976h CrossRefGoogle Scholar
  34. 34.
    Crowder MW, Walsh TR, Banovic L, Pettit M, Spencer J (1998) Antimicrob Agents Chemother 42(4):921–926Google Scholar
  35. 35.
    Wang Z, Benkovic SJ (1998) J Biol Chem 273(35):22402–22408. doi:10.1074/jbc.273.35.22402 CrossRefGoogle Scholar
  36. 36.
    Valladares MH, Felici A, Weber G, Adolph HW, Zeppezauer M, Rossolini GM et al (1997) Biochemistry 36:11534–11541. doi:10.1021/bi971056h CrossRefGoogle Scholar
  37. 37.
    Crawford PA, Sharma N, Chandrasekar S, Sigdel T, Walsh TR, Spencer J et al (2004) Protein Expr Purif 36:272–279. doi:10.1016/j.pep.2004.04.017 CrossRefGoogle Scholar
  38. 38.
    Walsh TR, Hall L, Assinder SJ, Nichols WW, Cartwright SJ, MacGowan AP et al (1994) Biochim Biophys Acta 1218:199–201Google Scholar
  39. 39.
    Walsh TR, Payne DJ, Neville T, Tolson D, MacGowan AP, Bennett PM (1997) Antimicrob Agents Chemother 41:1460–1462Google Scholar
  40. 40.
    Muder RR, Yu VL, Dummer JS, Vinson C, Lumish RM (1987) Arch Intern Med 147:1672–1674. doi:10.1001/archinte.147.9.1672 CrossRefGoogle Scholar
  41. 41.
    Khardori N, Elting L, Wong E, Schable B, Bodey GP (1990) Rev Infect Dis 12(6):997–1003Google Scholar
  42. 42.
    Villarino ME, Stevens LE, Schable B, Mayers G, Miller JM, Burke JP et al (1992) Infect Control Hosp Epidemiol 13(4):201–206CrossRefGoogle Scholar
  43. 43.
    Mett H, Rosta S, Schacher B, Frei R (1988) Rev Infect Dis 10(4):765–769Google Scholar
  44. 44.
    Miller LA, Ratnam K, Payne DJ (2001) Curr Opin Pharmacol 1(5):451–458. doi:10.1016/S1471-4892(01)00079-0 CrossRefGoogle Scholar
  45. 45.
    Walsh TR, Toleman MA, Poirel L, Nordmann P (2005) Clin Microbiol Rev 18(2):306–325. doi:10.1128/CMR.18.2.306-325.2005 CrossRefGoogle Scholar
  46. 46.
    Marra AR, Pereira CA, Gales AC, Menezes LC, Cal RG, de Souza JM et al (2006) Antimicrob Agents Chemother 50(1):388–390. doi:10.1128/AAC.50.1.388-390.2006 CrossRefGoogle Scholar
  47. 47.
    Toleman MA, Rolston K, Jones RN, Walsh TR (2004) Antimicrob Agents Chemother 48(1):329–332. doi:10.1128/AAC.48.1.329-332.2004 CrossRefGoogle Scholar
  48. 48.
    Hanson ND, Hossain A, Buck L, Moland ES, Thomson KS (2006) Antimicrob Agents Chemother 50(6):2272–2273. doi:10.1128/AAC.01440-05 CrossRefGoogle Scholar
  49. 49.
    Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP (2005) Antimicrob Agents Chemother 49(8):3538–3540. doi:10.1128/AAC.49.8.3538-3540.2005 CrossRefGoogle Scholar
  50. 50.
    Daiyasu H, Osaka K, Ishino Y, Toh H (2001) FEBS Lett 503(1):1–6. doi:10.1016/S0014-5793(01)02686-2 CrossRefGoogle Scholar
  51. 51.
    Scrofani SDB, Chung J, Huntley JJA, Benkovic SJ, Wright PE, Dyson HJ (1999) Biochemistry 38:14507–14514. doi:10.1021/bi990986t CrossRefGoogle Scholar
  52. 52.
    Huntley JJA, Scrofani SDB, Osborne MJ, Wright PE, Dyson HJ (2000) Biochemistry 39:13356–13364. doi:10.1021/bi001210r CrossRefGoogle Scholar
  53. 53.
    Salsbury FR, Crowley MF, Brooks CL (2001) Protein Struct Funct Genet 44(4):448–459. doi:10.1002/prot.1110 CrossRefGoogle Scholar
  54. 54.
    Huntley JJA, Fast W, Benkovic SJ, Wright PE, Dyson HJ (2003) Protein Sci 12:1368–1375. doi:10.1110/ps.0305303 CrossRefGoogle Scholar
  55. 55.
    Stote RH, Karplus M (1995) Proteins 23(1):12–31. doi:10.1002/prot.340230104 CrossRefGoogle Scholar
  56. 56.
    Gresh N, Sponer J (1999) J Phys Chem B 103(51):11415–11427. doi:10.1021/jp9921351 CrossRefGoogle Scholar
  57. 57.
    Pang YP, Xu K, Yazal JE, Prendergas FG (2000) Protein Sci 9(10):1857–1865Google Scholar
  58. 58.
    Pang YP (2001) Proteins 45(3):183–189. doi:10.1002/prot.1138 CrossRefGoogle Scholar
  59. 59.
    Oelschlaeger P, Schmid RD, Pleiss J (2003) Protein Eng 16(5):341–350. doi:10.1093/protein/gzg049 CrossRefGoogle Scholar
  60. 60.
    Oelschlaeger P, Schmid RD, Pleiss J (2003) Biochemistry 42(30):8945–8956. doi:10.1021/bi0300332 CrossRefGoogle Scholar
  61. 61.
    Carfi A, Duee E, Paul-Soto R, Galleni M, Frere JM, Dideberg O (1998) Acta Crystallogr D Biol Crystallogr 54:45–57. doi:10.1107/S090744499700927X CrossRefGoogle Scholar
  62. 62.
    Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frere JM (2001) Antimicrob Agents Chemother 45(3):660–663. doi:10.1128/AAC.45.3.660-663.2001 CrossRefGoogle Scholar
  63. 63.
    Wang Z, Fast W, Benkovic SJ (1998) J Am Chem Soc 120(41):10788–10789. doi:10.1021/ja982621m CrossRefGoogle Scholar
  64. 64.
    Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM et al (2005) J Comput Chem 26(16):1668–1688. doi:10.1002/jcc.20290 CrossRefGoogle Scholar
  65. 65.
    Agarwal PK, Billeter SR, Rajagopalan PT, Benkovic SJ, Hammes-Schiffer S (2002) Proc Natl Acad Sci USA 99:2794–2799. doi:10.1073/pnas.052005999 CrossRefGoogle Scholar
  66. 66.
    Pineda JR, Schwartz SD (2006) Philos Trans R Soc Lond B Biol Sci 361:1433–1438. doi:10.1098/rstb.2006.1877 CrossRefGoogle Scholar
  67. 67.
    Campos-Bermudez VA, Leite NR, Krog R, Costa-Filho AJ, Soncini FC, Oliva G et al (2007) Biochemistry 46(39):11069–11079. doi:10.1021/bi7007245 CrossRefGoogle Scholar
  68. 68.
    Tomatis PE, Rasia RM, Sergobia L, Vila AJ (2005) Proc Natl Acad Sci USA 102(29):13761–13766. doi:10.1073/pnas.0503495102 CrossRefGoogle Scholar
  69. 69.
    Oelschlaeger P, Schmid P, Pleiss J (2003) Biochemistry 42(30):8945–8956CrossRefGoogle Scholar
  70. 70.
    Oelschlaeger P, Mayo S, Pleiss J (2005) Protein Sci 14(3):765–774CrossRefGoogle Scholar
  71. 71.
    Irwin JJ, Raushel FM, Shoichet BK (2005) Biochemistry 44(37):12316–12328. doi:10.1021/bi050801k CrossRefGoogle Scholar
  72. 72.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W et al (2003) J Comput Chem 24:1999–2012. doi:10.1002/jcc.10349 CrossRefGoogle Scholar
  73. 73.
    Ertl P, Muhlbacher J, Rohde B, Selzer P (2003) SAR QSAR Environ Res 14(5–6):321–328 http://www.molinspiration.com/jme/ doi:10.1080/10629360310001673917 CrossRefGoogle Scholar
  74. 74.
  75. 75.
    Concha NO, Janson CA, Rowling P, Pearson S, Cheever CA, Clarke BP et al (2000) Biochemistry 39:4288–4298. doi:10.1021/bi992569m CrossRefGoogle Scholar
  76. 76.
    Kurosaki H, Yamaguchi Y, Higashi T, Soga K, Matsueda S, Yumoto H et al (2005) Angew Chem Int Ed Engl 44:3861–3864. doi:10.1002/anie.200500835 CrossRefGoogle Scholar
  77. 77.
    Wang J, Wolf RM, Caldwell JW, Kollamn PA, Case DA (2004) J Comput Chem 25(9):1157–1174. doi:10.1002/jcc.20035 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Freddie R. SalsburyJr.
    • 1
  • Michael W. Crowder
    • 2
  • Stephen F. Kingsmore
    • 3
  • James J. A. Huntley
    • 3
  1. 1.Department of PhysicsWake Forest UniversityWinston SalemUSA
  2. 2.Department of Chemistry and BiochemistryMiami UniversityOxfordUSA
  3. 3.National Center for Genome ResourcesSanta FeUSA

Personalised recommendations