Journal of Molecular Modeling

, Volume 15, Issue 4, pp 349–355 | Cite as

In-silico screening of new potential Bcl-2/Bcl-xl inhibitors as apoptosis modulators

  • Anna Maria Almerico
  • Marco Tutone
  • Antonino Lauria
Original Paper


One of the major problems in the fight against cancer is drug-resistance, which, at a molecular level, can be acquired through mutations able to deactivate apoptosis. In particular, proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-xl and Bcl-2, are overexpressed in many tumours. The development of new inhibitors of these proteins as potential anticancer therapeutics represents a new frontier. In this work, we carried out an in-silico screening of compounds from a free database of more than 2 million structures (ZINC database), which allowed us to identify 17 sulfonamide derivatives as new potential inhibitors; these are currently undergoing biological evaluation.


Apoptosis Bcl-2 Bcl-xl Inhibitors Molecular docking 


  1. 1.
    Daniel NN, Korsmeyer SJ (2004) Cell 116:205–219. doi:10.1016/S0092-8674(04)00046-7 CrossRefGoogle Scholar
  2. 2.
    Kirkin V, Joos S, Zornis M (2004) Biochim Biophys Acta 1644:229–249. doi:10.1016/j.bbamcr.2003.08.009 CrossRefGoogle Scholar
  3. 3.
    Sattler M, Liang H, Nettesheim DN, Meadows RP, Harlan JE, Eberstadt M et al (1997) Science 275:983–986. doi:10.1126/science.275.5302.983 CrossRefGoogle Scholar
  4. 4.
    Irwin JJ, Shoichet BK (2005) J Chem Inf Model 45:177–182. doi:10.1021/ci049714 + CrossRefGoogle Scholar
  5. 5.
    Ligandfit User Manual, Accelrys Inc, 2003.Google Scholar
  6. 6.
    Venkatachalam C, Jiang X, Oldfield T, Waldman M (2003) J Mol Graph Model 21:289–307. doi:10.1016/S1093-3263(02)00164-X CrossRefGoogle Scholar
  7. 7.
    Verkhivker G, Bouzida D, Gehlhaar DB, Rejto P, Arthurs S, Colson A et al (2000) J Comput Aided Mol Des 14:731–751. doi:10.1023/A:1008158231558 CrossRefGoogle Scholar
  8. 8.
    Gehlhaar D, Verkhivker G, Rejto P, Sherman C, Fogel D, Fogel L et al (1995) Chem Biol 2:317–324. doi:10.1016/1074-5521(95)90050-0 CrossRefGoogle Scholar
  9. 9.
    Gehlhaar D, Bouzida D, Rejto P (1999) Reduced dimensionality in ligand–protein structure prediction: covalent inhibitors of serine proteases and design of site-directed combinatorial libraries. In: Parrill AL, Reddy MR (eds) Rational drug design: novel methodology and practical applications, vol 719. American Chemical Society, Washington, DC, pp 292–311Google Scholar
  10. 10.
    Muegge I, Martin Y (1999) J Med Chem 42:791–804. doi:10.1021/jm980536j CrossRefGoogle Scholar
  11. 11.
    Wolber G, Langer T (2005) J Chem Inf Model 45:160–169. doi:10.1021/ci049885e CrossRefGoogle Scholar
  12. 12.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Adv Drug Deliv Rev 46:3–26. doi:10.1016/S0169-409X(00)00129-0 CrossRefGoogle Scholar
  13. 13.
    Cheng A, Coleman R, Smyth K, Cao Q, Soulard P, Caffrey D et al (2007) Nat Biotechnol 25:71–75. doi:10.1038/nbt1273 CrossRefGoogle Scholar
  14. 14.
    Bruncko M, Oost TK, Belli BA, Ding H, Joseph MK, Kunzer A et al (2007) J Med Chem 50:641–662. doi:10.1021/jm061152t CrossRefGoogle Scholar
  15. 15.
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al (2005) Nature 435:677–681. doi:10.1038/nature03579 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Anna Maria Almerico
    • 1
  • Marco Tutone
    • 1
  • Antonino Lauria
    • 1
  1. 1.Dipartimento Farmacochimico, Tossicologico e BiologicoUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations