Advertisement

Journal of Molecular Modeling

, 15:147 | Cite as

Structural studies of shikimate dehydrogenase from Bacillus anthracis complexed with cofactor NADP

  • Guy Barros Barcellos
  • Rafael Andrade Caceres
  • Walter Filgueira de AzevedoJr.Email author
Original Paper

Abstract

Bacillus anthracis has been employed as an agent of bioterrorism, with high mortality, despite anti-microbial treatment, which strongly indicates the need of new drugs to treat anthrax. Shikimate pathway is a seven step biosynthetic route which generates chorismic acid from phosphoenol pyruvate and erythrose-4-phosphate. Chorismic acid is the major branch point in the synthesis of aromatic amino acids, ubiquinone, and secondary metabolites. The shikimate pathway is essential for many pathological organisms, whereas it is absent in mammals. Therefore, these enzymes are potential targets for the development of nontoxic antimicrobial agents and herbicides and have been submitted to intensive structural studies. The forth enzyme of this pathway is responsible for the conversion of dehydroshikimate to shikimate in the presence of NADP. In order to pave the way for structural and functional efforts toward development of new antimicrobials we describe the molecular modeling of shikimate dehydrogenase from Bacillus anthracis complexed with the cofactor NADP. This study was able to identify the main residues of the NADP binding site responsible for ligand affinities. This structural study can be used in the design of more specific drugs against infectious diseases.

Keywords

Bacillus anthracis Bioterrorism Drug-design Molecular modeling Shikimate dehydroganase 

Notes

Acknowledgments

This work was supported by grants from CNPq, CAPES and Instituto do Milênio (CNPq-MCT). WFA is senior researcher of CNPq (Conselho Nacional de Pesquisas, Brazil).

References

  1. 1.
    Casadevall A (2008) Front Biosci 13:4009Google Scholar
  2. 2.
    Oliveira JS, Sousa EHS, Basso LA, Palaci M, Dietze R, Santos DS et al (2004) Chem Commun (Camb) 7:312 doi: 10.1039/b313592f CrossRefGoogle Scholar
  3. 3.
    Oliveira JS, Sousa EHS, Souza ON, Moreira IS, Santos DS, Basso LA (2006) Curr Pharm Des 12:2409 doi: 10.2174/138161206777698927 CrossRefGoogle Scholar
  4. 4.
    Oliveira JS, Vasconcelos IB, Moreira IS, Santos DS, Basso LA (2007) Curr Drug Targets 8:399 doi: 10.2174/138945007780058942 CrossRefGoogle Scholar
  5. 5.
    Dias MV, Vasconcelos IB, Prado AM, Fadel V, Basso LA, de Azevedo WF Jr et al (2007) Struct Biol 159:369 doi: 10.1016/j.jsb.2007.04.009 CrossRefGoogle Scholar
  6. 6.
    Vasconcelos IB, Meyer E, Sales FAM, Moreira IS, Basso LA, Santos DS (2008) Anti-infecive Agents in Medicinal Chemistry 7:50Google Scholar
  7. 7.
    Tipparaju SK, Jovasawal S, Forrester S, Mulhearn DC, Pegan S, Johnson ME et al (2008) Bioorg Med Chem Lett 18(12):3565 doi: 10.1016/j.bmcl.2008.05.004 CrossRefGoogle Scholar
  8. 8.
    Pereira JH, Vasconcelos JB, Oliveira JS, Caceres RA, de Azevedo WF Jr, Basso LA et al (2007) Curr Drug Targets 8:459 doi: 10.2174/138945007780059013 CrossRefGoogle Scholar
  9. 9.
    Dias MV, Faím LM, Vasconcelos IB, de Oliveira JS, Basso LA, Santos DS et al (2007) Acta Crystallogr Sect F Struct Biol Cryst Commun 63:1 doi: 10.1107/S1744309106046823 CrossRefGoogle Scholar
  10. 10.
    Silveira NJ, Uchoa HB, Pereira JH, Canduri F, Basso LA, Palma MS et al (2005) J Mol Model 11:160 doi: 10.1007/s00894-005-0240-2 CrossRefGoogle Scholar
  11. 11.
    Pereira JH, de Oliveira JS, Canduri F, Dias MV, Palma MS, Basso LA et al (2004) Acta Crystallogr D Biol Crystallogr 60:2310 doi: 10.1107/S090744490402517X CrossRefGoogle Scholar
  12. 12.
    Segura-Cabrera A, Rodríguez-Pérez MA (2008) Bioorg Med Chem Lett 18(11):3152 doi: 10.1016/j.bmcl.2008.05.003 CrossRefGoogle Scholar
  13. 13.
    de Azevedo WF Jr (2007) Curr Drug Targets 8(3):387 doi: 10.2174/138945007780058960 CrossRefGoogle Scholar
  14. 14.
    Herrmann KM, Weaver LM (1999) Annu Rev Plant Physiol Plant Mol Biol 50:473–503 doi: 10.1146/annurev.arplant.50.1.473 CrossRefGoogle Scholar
  15. 15.
    Steinrucken HC, Amrhein N (1984) Eur J Biochem 14:351–357 doi: 10.1111/j.1432-1033.1984.tb08379.x CrossRefGoogle Scholar
  16. 16.
    Schonbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JN (2001) Proc Natl Acad Sci USA 98:1376–1380 doi: 10.1073/pnas.98.4.1376 CrossRefGoogle Scholar
  17. 17.
    Benach J, Lee I, Edstrom W, Kuzin AP, Chiang Y, Acton TB et al (2003) J Biol Chem 278:19176–19182 doi: 10.1074/jbc.M301348200 CrossRefGoogle Scholar
  18. 18.
    Shumilin I, Kretsinger R, Bauerle R (1999) Struct 7:865–875 doi: 10.1016/S0969-2126(99)80109-9 CrossRefGoogle Scholar
  19. 19.
    Carpenter EP, Hawkins AR, Frost JW, Brown KA (1998) Nature 394:299–302 doi: 10.1038/28431 CrossRefGoogle Scholar
  20. 20.
    Gourley DG, Shrive AK, Polikarpov I, Krell T, Coggins JR, Hawkins AR (1999) Nat Struct Biol 6:521–525 doi: 10.1038/9287 CrossRefGoogle Scholar
  21. 21.
    Michel G, Roszak AW, Sauve V, Maclean J, Matte A, Coggins JR (2003) J Biol Chem 278:19463–19472 doi: 10.1074/jbc.M300794200 CrossRefGoogle Scholar
  22. 22.
    Krell T, Coggins JR, Lapthorn AJ (1998) J Mol Biol 278:983–997 doi: 10.1006/jmbi.1998.1755 CrossRefGoogle Scholar
  23. 23.
    Stallings WC, Abdel-Maguid SS, Lim LW, Shie HS, Dayringer HE, Leimgruber NK (1991) Proc Natl Acad Sci USA 88:5046–5050 doi: 10.1073/pnas.88.11.5046 CrossRefGoogle Scholar
  24. 24.
    Maclean J, Ali S (2003) Structure 11:1499–1511 doi: 10.1016/j.str.2003.11.005 CrossRefGoogle Scholar
  25. 25.
    Bentley R (1990) Crit Rev Biochem Mol Biol 25(5):307–284 doi: 10.3109/10409239009090615 CrossRefGoogle Scholar
  26. 26.
    Roberts F, Roberts CW, Johnson JJ, Kyle DE, Krell T, Coggins C et al (1998) Nature 393:801–805 doi: 10.1038/30718 CrossRefGoogle Scholar
  27. 27.
    Roberts CW, Roberts F, Lyons RE, Kirisits MJ, Mui EJ, Finnerty J et al (2002) Infect Dis 185:25–36 doi: 10.1086/338004 CrossRefGoogle Scholar
  28. 28.
    Herrmann KM (1995) Plant Cell 7:907–919CrossRefGoogle Scholar
  29. 29.
    Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) J Mol Biol 247:536–540Google Scholar
  30. 30.
    Baillie AC, Corbett JR, Dowsett JR, McCloskey P (1972) Biochem J 126:21Google Scholar
  31. 31.
    Deka RK, Anton IA, Dunbar B, Coggins JR (1994) FEBS Lett 349:397–402 doi: 10.1016/0014-5793(94)00710-1 CrossRefGoogle Scholar
  32. 32.
    Bagautdinov B, Kunishima N (2007) J Mol Biol 373:424–438 doi: 10.1016/j.jmb.2007.08.017 CrossRefGoogle Scholar
  33. 33.
    Kroemer RT, Doughty SW, Robinson AJ, Richards WG (1996) Protein Eng 9(6):493–498 doi: 10.1093/protein/9.6.493 CrossRefGoogle Scholar
  34. 34.
    Berman HM, Westbrook J, Feng Z, Gilliard G, Bhat TN, Weissig H et al (2000) Nucleic Acids Res 28:235–242 doi: 10.1093/nar/28.1.235 CrossRefGoogle Scholar
  35. 35.
    Fernandes CL, Breda A, Santos DS, Basso LA, Souza ON (2007) Comput Biol Med 37:149–158 doi: 10.1016/j.compbiomed.2006.01.001 CrossRefGoogle Scholar
  36. 36.
    Gasteiger E, Jung E, Bairoch A (2001) Curr Issues Mol Biol 3:47Google Scholar
  37. 37.
    Bairoch A, Apweiler R (2000) Nucleic Acids Res 28:45 doi: 10.1093/nar/28.1.45 CrossRefGoogle Scholar
  38. 38.
    Bairoch A, Apweiler RJ (1997) Mol Med 75:312Google Scholar
  39. 39.
    Uchoa HB, Jorge GE, da Silveira NJF, Camera JC Jr, Canduri A, de Azevedo WF (2004) Biochem Biophys Res Commun 325:1481–1486 doi: 10.1016/j.bbrc.2004.10.192 CrossRefGoogle Scholar
  40. 40.
    Sali A, Blundell TL (1993) J Mol Biol 234:779–815 doi: 10.1006/jmbi.1993.1626 CrossRefGoogle Scholar
  41. 41.
    Arcuri HA, Canduri F, Pereira JH, da Silveira NJF, Camara JC Jr, de Oliveira JS et al (1994) Biochem Biophys Res Commun 320:979–991 doi: 10.1016/j.bbrc.2004.05.220 CrossRefGoogle Scholar
  42. 42.
    Dias MVB, Ely F, Palma MS, De Azevedo WF Jr, Basso LA, Santos DS (2007) Curr Drug Targets 8:48–55 doi: 10.2174/138945007780058924 Google Scholar
  43. 43.
    Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680 doi: 10.1093/nar/22.22.4673 CrossRefGoogle Scholar
  44. 44.
    Marques MR, Pereira JH, Oliveira JS, Basso LA, Santos DS, De Azevedo WF Jr et al (2007) Curr Drug Targets 8:56–68 doi: 10.2174/138945007780058951 Google Scholar
  45. 45.
    Caceres RA, Timmers LFS, Dias R, Basso LA, Santos DS, de Azevedo WF (2008) Bioorg Med Chem 16(9):4984–4993 doi: 10.1016/j.bmc.2008.03.044 CrossRefGoogle Scholar
  46. 46.
    De Azevedo WF, Mueller-Dieckmann JH, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH (1996) Proc Natl Acad Sci USA 93:2735–2740 doi: 10.1073/pnas.93.7.2735 CrossRefGoogle Scholar
  47. 47.
    Wang R, Lai L, Wang S (2002) J Comput Aided J Mol Des 16:11 doi: 10.1023/A:1016357811882 CrossRefGoogle Scholar
  48. 48.
    Caceres RA, Macedo Timmers LF, Vivan AL, Schneider CZ, Basso LA, De Azevedo WF et al (2008) J Mol Model 14(5):427–434 doi: 10.1007/s00894-008-0291-2 CrossRefGoogle Scholar
  49. 49.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291 doi: 10.1107/S0021889892009944 CrossRefGoogle Scholar
  50. 50.
    Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127–134 doi: 10.1093/protein/8.2.127 CrossRefGoogle Scholar
  51. 51.
    Gasteiger E, Gattiker A, Hoogland C, Ivany I, Appel RD, Bairoch A (2003) Nucleic Acids Res 31:3784–3788 doi: 10.1093/nar/gkg563 CrossRefGoogle Scholar
  52. 52.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38 doi: 10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  53. 53.
    Delano WL, Lam JW (2005) Abstr Pap Am Chem Soc 230:1371–1372Google Scholar
  54. 54.
  55. 55.
    Vogan E (2003) Structure 11:902–903 doi: 10.1016/S0969-2126(03)00165-5 CrossRefGoogle Scholar
  56. 56.
    Arcuri HA, Borges JC, Fonseca IO, Pereira JH, Ruggiero-Neto J, Basso LA et al (2008) Proteins 72(2):720–730 doi: 10.1002/prot.21953 CrossRefGoogle Scholar
  57. 57.
    Gan J, Wu Y, Prabakaram P, Gu Y, Li Y, Andrykovich M et al (2007) Biochemistry 46:9513–9522 doi: 10.1021/bi602601e CrossRefGoogle Scholar
  58. 58.
    Lim S, Schroder I, Monbouquette HG (2004) FEMS Microbiol Lett 238:101–106Google Scholar
  59. 59.
    Zhang X, Zhang S, Hao F, Lai X, Yu H, Huang Y et al (2005) Biochem Mol Biol 38:624–631Google Scholar
  60. 60.
    Han C, Wang L, Yu K, Chen L, Hu L, Chen K et al (2006) FEBS J 273:4682–4692 doi: 10.1111/j.1742-4658.2006.05469.x CrossRefGoogle Scholar
  61. 61.
    Collaborative Computation Project, Number 4 (1994) Acta Crystallogr D Biol Crystallogr 50:760 doi: 10.1107/S0907444994003112 Google Scholar
  62. 62.
    Brändén CI (1980) Q Rev Biophys 13:317–338CrossRefGoogle Scholar
  63. 63.
    Lesk AM (1995) Curr Opin Struct Biol 5:775–783 doi: 10.1016/0959-440X(95)80010-7 CrossRefGoogle Scholar
  64. 64.
    Canduri F, Teodoro LGVL, Lorenzi CCB, Hial V, Gomes RAS, Ruggiero Neto J et al (2001) Acta Crystallogr 57:1560–1570Google Scholar
  65. 65.
    De Azevedo WF Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH (1996) Proc Natl Acad Sci USA 93(7):2735–2740 doi: 10.1073/pnas.93.7.2735 CrossRefGoogle Scholar
  66. 66.
    De Azevedo WF Jr, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997) Eur J Biochem 243:518–526 doi: 10.1111/j.1432-1033.1997.0518a.x CrossRefGoogle Scholar
  67. 67.
    De Azevedo WF Jr, Canduri F, Fadel V, Teodoro LGVL, Hial V, Gomes RAS (2001) Biochem Biophys Res Commun 287(1):277–281CrossRefGoogle Scholar
  68. 68.
    De Azevedo WF Jr, Canduri F, da Silveira NJF (2002) Biochem Biophys Res Commun 293(1):566–571 doi: 10.1016/S0006-291X(02)00266-8 CrossRefGoogle Scholar
  69. 69.
    Kim SH, Schulze-Gahmen U, Brandsen J, de Azevedo WF Jr (1996) Prog Cell Cycle Res 2:137–145Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Guy Barros Barcellos
    • 1
  • Rafael Andrade Caceres
    • 1
    • 2
  • Walter Filgueira de AzevedoJr.
    • 1
    Email author
  1. 1.Faculdade de Biociências, Laboratório de Bioquímica EstruturalPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Programa de Pós Graduação em Medicina e Ciências da SaúdePontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations