Advertisement

Journal of Molecular Modeling

, 15:203 | Cite as

Phylogenetic analysis, homology modelling, molecular dynamics and docking studies of caffeoyl–CoA-O- methyl transferase (CCoAOMT 1 and 2) isoforms isolated from subabul (Leucaena leucocephala)

  • Nataraj Sekhar Pagadala
  • Manish Arha
  • P. S. Reddy
  • Ranadheer Kumar
  • V. L. Sirisha
  • S. Prashant
  • K. Janardhan Reddy
  • Bashir Khan
  • S. K. Rawal
  • P. B. Kavi KishorEmail author
Original Paper

Abstract

Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) is an important enzyme that participates in lignin biosynthesis especially in the formation of cell wall ferulic esters of plants. It plays a pivotal role in the methylation of the 3-hydroxyl group of caffeoyl CoA. Two cDNA clones that code CCoAOMT were isolated earlier from subabul and in the present study; 3D models of CCoAOMT1 and CCoAOMT2 enzymes were built using the MODELLER7v7 software to find out the substrate binding sites. These two proteins differed only in two amino acids and may have little or no functional redundancy. Refined models of the proteins were obtained after energy minimization and molecular dynamics in a solvated water layer. The models were further assessed by PROCHECK, WHATCHECK, Verify_3D and ERRAT programs and the results indicated that these models are reliable for further active site and docking analysis. The refined models showed that the two proteins have 9 and 10 α-helices, 6 and 7 β-sheets respectively. The models were used for docking the substrates CoA, SAM, SAH, caffeoyl CoA, feruloyl CoA, 5-hydroxy feruloyl CoA and sinapyl CoA which showed that CoA and caffeoyl CoA are binding with high affinity with the enzymes in the presence and absence of SAM. It appears therefore that caffeoyl CoA is the substrate for both the isoenzymes. The results also indicated that CoA and caffeoyl CoA are binding with higher affinity to CCoAOMT2 than CCoAOMT1. Therefore, CCoAOMT2 conformation is thought to be the active form that exists in subabul. Docking studies indicated that conserved active site residues Met58, Thr60, Val63, Glu82, Gly84, Ser90, Asp160, Asp162, Thr169, Asn191 and Arg203 in CCoAOMT1 and CCoAOMT2 enzymes create the positive charge to balance the negatively charged caffeoyl CoA and play an important role in maintaining a functional conformation and are directly involved in donor-substrate binding.

Keywords

Caffeoyl–CoA 3-O-methyl transferase Docking Modelling S-adenosyl homocysteine 

Notes

Acknowledgements

The authors are thankful to the CSIR, New Delhi, for financial assistance in the form of a research project (CSIR-NMITLI) on paper and pulp.

References

  1. 1.
    Higuchi T (1998) Kung S-D, Yang S-F (eds) Discoveries in plant biology. World Scientific, Singapore, 233–269Google Scholar
  2. 2.
    Grima-Pettenati J, Goffner D (1999) Plant Sci 145:51–65CrossRefGoogle Scholar
  3. 3.
    Meyer K, Sirley AM, Cusumano JC, Bell D Lelong A, Chappel C (1998) Proc Natl Acad Sci USA 95:6619–6623CrossRefGoogle Scholar
  4. 4.
    Tsai CJ, Mielke MR, Hu WJ, Podila GK, Chiang VL (1998) Plant Physiol 117:101–112CrossRefGoogle Scholar
  5. 5.
    Zhong R, Morrison WH, Negrel J, Ye ZH (1998) Plant Cell 10:2033–2045CrossRefGoogle Scholar
  6. 6.
    Ye ZH, Kneusel RE, Matern U, Varner JE (1994) Plant Cell 6:1427–1439CrossRefGoogle Scholar
  7. 7.
    Ye ZH, Varner JE (1995) Plant Physiol 108:459–467CrossRefGoogle Scholar
  8. 8.
    Ye ZH (1997) Plant Physiol 115:1341–1350CrossRefGoogle Scholar
  9. 9.
    Inoue K, Vincent JH, Sewalt G, Balance MNIW, Sturzer C, Dixon RA (1998) Plant Physiol 117:761–770CrossRefGoogle Scholar
  10. 10.
    Martz F, Maury S, Pincon G, Legrand M (1998) Plant Mol Biol 36:427–437CrossRefGoogle Scholar
  11. 11.
    Kersey R, Inoue K, Schubert KR, Dixon RA (1999) Protoplasma 209:46–57CrossRefGoogle Scholar
  12. 12.
    Li L, Osakabe K, Joshi CP, Chiang VL (1999) Plant Mol Biol 40:555–565CrossRefGoogle Scholar
  13. 13.
    Meng H, Campbell WH (1998) Plant Mol Biol 38:513–520CrossRefGoogle Scholar
  14. 14.
    Maury S, Geoffroy P, Legrand M (1999) Plant Physiol 121:215–224CrossRefGoogle Scholar
  15. 15.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DJ (1997) Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  16. 16.
    Nicholas KB, Nicholas HB (1997) http://www.psc.edu/biomed/genedoc [Online.]
  17. 17.
    Page RDM (1996) Comput Appl Biosci 12:357–358Google Scholar
  18. 18.
    Perrière G, Gouy M (1996) Biochimie 78:364–369CrossRefGoogle Scholar
  19. 19.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) J Mol Biol 215:403–410Google Scholar
  20. 20.
    Ferrer J, Zubeita C, Dixon RA, Noel JP (2005) Plant Physiol 137:1009–1017CrossRefGoogle Scholar
  21. 21.
    Needleman SB, Wunsch CD (1970) J Mol Biol 48:443–453CrossRefGoogle Scholar
  22. 22.
    Sali A, Blundell TL (1993) J Mol Biol 234:779–815CrossRefGoogle Scholar
  23. 23.
    MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field M, Fischer JS, Gao J, Guo H, Ha S (1998) J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  24. 24.
    Sali A, Overington JP (1994) Protein Sci 3:1582–1596Google Scholar
  25. 25.
    Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comput Phys 151:283CrossRefGoogle Scholar
  26. 26.
    MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field M, Fischer JS, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1992) FASEB J 6:A143–A143Google Scholar
  27. 27.
    MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field M, Fischer JS, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher IWE, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998a) J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  28. 28.
    Schlenkrich M, Brickmann J, MacKerell AD Jr, Karplus M (1996) A molecular perspective from computation and experiment. In: Merz KM, Roux B (eds) Birkhauser, Boston MA, pp 31–81Google Scholar
  29. 29.
    Jorgensen WL, Chandresekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  30. 30.
    Grubmuller H, Heller H, Windemuth A, Schulten K (1991) Mol Sim 6:121–142CrossRefGoogle Scholar
  31. 31.
    Schlick T, Skeel R, Brunger A, Kale L, Board JA Jr, Hermans J, Schulten K (1999) Algorithmic challenges in computational molecular biophysics. J Comput Phys 151:9–48CrossRefGoogle Scholar
  32. 32.
    Brunger (1992) X-PLOR, Version 3.1: Yale University New Haven CTGoogle Scholar
  33. 33.
    MacKerell AD Jr, Brooks B, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998b) In: Schleyer P (ed) The encyclopedia of computational chemistry. John Wiley & Sons, Chichester, UK, pp 271–277Google Scholar
  34. 34.
    Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341CrossRefGoogle Scholar
  35. 35.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577CrossRefGoogle Scholar
  36. 36.
    Laskoswki RA, MacArthur MW, Moss DS, Thorton JM (1993) J Appl Cryst 26:283–291CrossRefGoogle Scholar
  37. 37.
    Colovos K, Yeates TO (1993) Protein Sci 2:1511–1519CrossRefGoogle Scholar
  38. 38.
    Vriend G (1990) J Mol Graph 8:52–56CrossRefGoogle Scholar
  39. 39.
    Hooft RWW, Vriend G, Sander C, Abola EE (1996) Nature 381:272CrossRefGoogle Scholar
  40. 40.
    Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723CrossRefGoogle Scholar
  41. 41.
    Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) Nucleic Acids Res 34:W116–W118Google Scholar
  42. 42.
    Schulz-Gasch T, Stahl M (2003) J Mol Model 9:47–57Google Scholar
  43. 43.
    Rossmann MG, Moras D, Olsen KW (1974) Nature 250:194–199CrossRefGoogle Scholar
  44. 44.
    Zhong RW, Morrison H III, Himmelsbach DS, Poole FL II, Ye ZH (2000) Plant Physiol 124:563–577Google Scholar
  45. 45.
    Hoffmann L, Maury S, Bergdoll M, Thion L, Erard M, Legrand M (2001) J Biol Chem 276:36831–36838CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nataraj Sekhar Pagadala
    • 1
  • Manish Arha
    • 2
  • P. S. Reddy
    • 1
  • Ranadheer Kumar
    • 1
  • V. L. Sirisha
    • 1
  • S. Prashant
    • 1
  • K. Janardhan Reddy
    • 3
  • Bashir Khan
    • 2
  • S. K. Rawal
    • 2
  • P. B. Kavi Kishor
    • 1
    Email author
  1. 1.Department of GeneticsOsmania UniversityHyderabadIndia
  2. 2.Plant Tissue Culture DivisionNational Chemical LaboratoryPuneIndia
  3. 3.Department of BotanyOsmania UniversityHyderabadIndia

Personalised recommendations