Journal of Molecular Modeling

, Volume 15, Issue 2, pp 123–131 | Cite as

The molecular properties of heterocyclic and homocyclic hydrogen-bonded complexes evaluated by DFT calculations and AIM densities

  • Boaz G. OliveiraEmail author
  • Regiane C. M. U. Araújo
  • Antônio B. Carvalho
  • Mozart N. Ramos
Original Paper


This theoretical study presents a comparative analysis of the molecular properties of heterocyclic (C2H4O⋯HF and C2H5N⋯HF) and homocyclic (C3H6⋯HF) hydrogen-bonded complexes. Initially, the equilibrium geometries of these complexes were analyzed in detail at the B3LYP/6–311++G(d,p) level of theory. Subsequently, the interaction energies and polarizabilities were also evaluated, as well as the infrared stretch frequencies and absorption intensities. In addition, by combining intermolecular criteria and charge density concepts, calculations of Bader’s theory of atoms in molecules were used to determine the maxima and minima for electron density in order to measure the strength of the n⋯H and pπ⋯H hydrogen bonds. Finally, the possibility of an F⋯Hα secondary interaction between the fluoride (F) of hydrogen fluoride and the axial hydrogen atoms (Hα) of the C2H4O and C2H5N heterocyclic rings was explored.


AIM B3LYP Heterocyclic Homocyclic Hydrogen bonds 



Thanks to Brazilian funding agencies CAPES and CNPq.

Supplementary material

894_2008_380_MOESM1_ESM.doc (30 kb)
ESM 1 Optimized geometries of the C2H4O⋯HF, C2H5N⋯HF, and C3H6⋯HF hydrogen-bonded complexes using B3LYP/6–311++G(d,p) calculations (DOC 29.5 KB)


  1. 1.
    Larsen RW, Suhm MA (2006) J Chem Phys 125:154314–154319 doi: 10.1063/1.2358349 CrossRefGoogle Scholar
  2. 2.
    Smallwood CJ, McAllister MA (1997) J Am Chem Soc 119:11277–11281 doi: 10.1021/ja972517p CrossRefGoogle Scholar
  3. 3.
    Grabowski SJ (2001) J Mol Struct 562:137–143 doi: 10.1016/S0022-2860(00)00863-2 CrossRefGoogle Scholar
  4. 4.
    Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN, Hernandes MZ, Cavalcante KR (2007) J Mol Struct THEOCHEM 802:91–97 doi: 10.1016/j.theochem.2006.09.002 CrossRefGoogle Scholar
  5. 5.
    Hobza P, Sponer J (1999) Chem Rev 99:3247–3276 doi: 10.1021/cr9800255 CrossRefGoogle Scholar
  6. 6.
    Delanoye SN, Herrebout WA, van der Veken B (2002) J Am Chem Soc 124:11854–11855 doi: 10.1021/ja027610e CrossRefGoogle Scholar
  7. 7.
    Suenram RD, Grabow JU, Zuban A, Leonov I (1999) Rev Sci Instrum 70:2127–2135 doi: 10.1063/1.1149725 CrossRefGoogle Scholar
  8. 8.
    Legon AC, Aldrich PD, Flygare WH (1981) J Chem Phys 75:625–630 doi: 10.1063/1.442079 CrossRefGoogle Scholar
  9. 9.
    Legon AC, Aldrich PD, Flygare WH (1982) J Am Chem Soc 104:1486–1490 doi: 10.1021/ja00370a007 CrossRefGoogle Scholar
  10. 10.
    Cole GC, Legon AC (2004) Chem Phys Lett 400:419–424 doi: 10.1016/j.cplett.2004.10.138 CrossRefGoogle Scholar
  11. 11.
    Araújo RCMU, da Silva JBP, Ramos MN (1995) Spectrochim Acta [A] 51:821–830 doi: 10.1016/0584-8539(94)00194-G CrossRefGoogle Scholar
  12. 12.
    Araújo RCMU, Ramos MN (1996) J Mol Struct THEOCHEM 366:233–240 doi: 10.1016/0166-1280(96)04536-8 CrossRefGoogle Scholar
  13. 13.
    Araújo RCMU, Ramos MN (1998) J Braz Chem Soc 9:499–505Google Scholar
  14. 14.
    Silva JBP, Silva MR Jr, Ramos MN (2005) J Braz Chem Soc 16:844–850Google Scholar
  15. 15.
    Oliveira BG, Araújo RCMU (2007) Quim Nova 30:791–796Google Scholar
  16. 16.
    Rozas I, Alkorta I, Elguero J (1997) J Phys Chem A 101:9457–9463 doi: 10.1021/jp971893t CrossRefGoogle Scholar
  17. 17.
    Zhang Y-H, Hao J-K, Wang X, Zhou W, Tang T-H (1998) J Mol Struct THEOCHEM 455:85–99 doi: 10.1016/S0166-1280(98)00247-4 CrossRefGoogle Scholar
  18. 18.
    Oliveira BG, Santos ECS, Duarte EM, Araújo RCMU, Ramos MN, Carvalho AB (2004) Spectrochim Acta [A] 60:1883–1887 doi: 10.1016/j.saa.2003.10.006 CrossRefGoogle Scholar
  19. 19.
    Oliveira BG, Duarte EM, Araújo RCMU, Ramos MN, Carvalho AB (2005) Spectrochim Acta [A] 61:491–494 doi: 10.1016/j.saa.2004.04.023 CrossRefGoogle Scholar
  20. 20.
    Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2007) Spectrochim Acta [A] 68:626–631 doi: 10.1016/j.saa.2006.12.038 CrossRefGoogle Scholar
  21. 21.
    Cremer D, Kraka E (1985) J Am Chem Soc 107:3800–3810 doi: 10.1021/ja00299a009 CrossRefGoogle Scholar
  22. 22.
    Greenberg A, Liebman JF (1978) Strained organic compounds. Academic, New YorkGoogle Scholar
  23. 23.
    Castaneda JP, Denisov GS, Kucherov SY, Schreiber VM, Shurukhina AV (2003) J Mol Struct 660:25–40 doi: 10.1016/j.molstruc.2003.07.010 CrossRefGoogle Scholar
  24. 24.
    Chandra AK, Minh TN, Uchimaru T, Zeegers-Huyskens T (2000) J Mol Struct 555:61–66 doi: 10.1016/S0022-2860(00)00587-1 CrossRefGoogle Scholar
  25. 25.
    Dimitrova Y (1999) Rec Res Dev Phys Chem 3:133–148Google Scholar
  26. 26.
    Tretiak S, Mukamel S (2002) Chem Rev 102:3171–3212 doi: 10.1021/cr0101252 CrossRefGoogle Scholar
  27. 27.
    Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971–5004 doi: 10.1021/cr040084k CrossRefGoogle Scholar
  28. 28.
    Rubtsov IV, Redmore NP, Hochstrasser RM, Therien MJ (2004) J Am Chem Soc 126:2684–2685 doi: 10.1021/ja0305499 CrossRefGoogle Scholar
  29. 29.
    Bredenbeck J, Helbing J, Hamm P (2004) J Am Chem Soc 126:990–991 doi: 10.1021/ja0380190 CrossRefGoogle Scholar
  30. 30.
    Sun MT, Chen YH, Song P, Ma FC (2005) Chem Phys Lett 413:110–117 doi: 10.1016/j.cplett.2005.07.070 CrossRefGoogle Scholar
  31. 31.
    Sun D, Fang J, Yu G, Ma F (2007) J Mol Struct THEOCHEM 806:105–112 doi: 10.1016/j.theochem.2006.11.015 CrossRefGoogle Scholar
  32. 32.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926 doi: 10.1021/cr00088a005 CrossRefGoogle Scholar
  33. 33.
    Bader RFW (1991) Chem Rev 91:893–928 doi: 10.1021/cr00005a013 CrossRefGoogle Scholar
  34. 34.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford, UKGoogle Scholar
  35. 35.
    Popelier PLA (2000) Coord Chem Rev 197:169–189 doi: 10.1016/S0010-8545(99)00189-7 CrossRefGoogle Scholar
  36. 36.
    Oliveira BG, Pereira FS, Araújo RCMU, Ramos MN (2006) Chem Phys Lett 427:181–184 doi: 10.1016/j.cplett.2006.06.019 CrossRefGoogle Scholar
  37. 37.
    Oliveira BG, Vasconcellos MLAA (2006) J Mol Struct THEOCHEM 774:83–88 doi: 10.1016/j.theochem.2006.06.018 CrossRefGoogle Scholar
  38. 38.
    Oliveira BG, Araújo RCMU, Carvalho AB, Lima EF, Silva WLV, Ramos MN, Tavares AM (2006) J Mol Struct THEOCHEM 775:39–45 doi: 10.1016/j.theochem.2006.06.028 CrossRefGoogle Scholar
  39. 39.
    Bader RFW, MacDougall PJ, Lau CD (1984) J Am Chem Soc 106:1594–1605 doi: 10.1021/ja00318a009 CrossRefGoogle Scholar
  40. 40.
    Bader RFW (1980) J Chem Phys 73:2871–2883 doi: 10.1063/1.440457 CrossRefGoogle Scholar
  41. 41.
    Bone RGA, Bader RFW (1996) J Phys Chem 100:10892–10911 doi: 10.1021/jp953512m CrossRefGoogle Scholar
  42. 42.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871 doi: 10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  43. 43.
    Kohn W, Sham LJ (1965) Phys Rev A 140:1133–1138 doi: 10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  44. 44.
    Becke AD (1997) J Chem Phys 107:8554–8560 doi: 10.1063/1.475007 CrossRefGoogle Scholar
  45. 45.
    Becke AD (1993) J Chem Phys 98:5648–5652 doi: 10.1063/1.464913 CrossRefGoogle Scholar
  46. 46.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789 doi: 10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Rega N, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) GAUSSIAN 98W (Revision A.1). Gaussian, Pittsburgh PAGoogle Scholar
  48. 48.
    Cioslowski J (1992) Chem Phys Lett 194:73–78 doi: 10.1016/0009-2614(92)85745-V CrossRefGoogle Scholar
  49. 49.
    Cioslowski J (1992) Chem Phys Lett 219:151–154 doi: 10.1016/S0009-2614(94)87001-2 CrossRefGoogle Scholar
  50. 50.
    Cioslowski J, Nanayakkara A, Challacombe M (1993) Chem Phys Lett 203:137–142 doi: 10.1016/0009-2614(93)85377-Z CrossRefGoogle Scholar
  51. 51.
    AIM (2000) 1.0 program designed by Biegler-König F, University of Applied Sciences. Bielefeld, GermanyGoogle Scholar
  52. 52.
    van Duijneveldt FB, Murrell JN (1967) J Chem Phys 46:1759–1767 doi: 10.1063/1.1840932 CrossRefGoogle Scholar
  53. 53.
    McQuarrie DA (1973) Statistical thermodynamics. Harper and Row, New YorkGoogle Scholar
  54. 54.
    Boys SB, Bernardi F (1970) Mol Phys 19:553–566 doi: 10.1080/00268977000101561 CrossRefGoogle Scholar
  55. 55.
    Legon AC, Kisiel Z, Georgiou AS, Millen DJ (1989) Chem Phys Lett 155:447–454 doi: 10.1016/0009-2614(89)87184-2 CrossRefGoogle Scholar
  56. 56.
    Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2007) J Theor Comp Chem 6:647–660CrossRefGoogle Scholar
  57. 57.
    Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University, New YorkGoogle Scholar
  58. 58.
    Lord RC, Nolin B (1956) J Chem Phys 24:656–658 doi: 10.1063/1.1742592 CrossRefGoogle Scholar
  59. 59.
    Shagidullin RR, Grechkin NP (1969) Chem Heter Comp 3:232–235 doi: 10.1007/BF01172558 CrossRefGoogle Scholar
  60. 60.
    Dudev T, Lim C (1998) J Am Chem Soc 120:4450–4458 doi: 10.1021/ja973895x CrossRefGoogle Scholar
  61. 61.
    Prichard DG, Nandi RN, Muenter JS (1988) J Chem Phys 89:115–123 doi: 10.1063/1.455513 CrossRefGoogle Scholar
  62. 62.
    Bishop DM, Cheung LM (1982) J Phys Chem Ref Data 11:119–133CrossRefGoogle Scholar
  63. 63.
    Carbó R, Klobukowski M (1990) Self consistent field: theory and applications. Elsevier, AmsterdamGoogle Scholar
  64. 64.
    Stryer L (1995) Biochemistry. Freeman, New YorkGoogle Scholar
  65. 65.
    Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754 doi: 10.1021/j100024a016 CrossRefGoogle Scholar
  66. 66.
    Grabowski SJ (2004) J Phys Chem A 108:1806–1812 doi: 10.1021/jp036770p CrossRefGoogle Scholar
  67. 67.
    Grabowski SJ, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 432:33–39 doi: 10.1016/j.cplett.2006.10.069 CrossRefGoogle Scholar
  68. 68.
    Grabowski SJ (2007) Chem Phys Lett 436:63–67 doi: 10.1016/j.cplett.2007.01.041 CrossRefGoogle Scholar
  69. 69.
    Grabowski SJ (2007) J Phys Chem A 111:13537–13543 doi: 10.1021/jp076990t CrossRefGoogle Scholar
  70. 70.
    Grabowski SJ (2007) J Phys Chem A 111:3387–3393 doi: 10.1021/jp070530i CrossRefGoogle Scholar
  71. 71.
    Oliveira BG, Araújo RCMU, Chagas FC, Carvalho AB, Ramos MN (2008) J Mol Model 14:949–955 doi: 10.1007/s00894-008-0337-5 CrossRefGoogle Scholar
  72. 72.
    Oliveira BG (2007) J Arg Chem Soc 95:59–69Google Scholar
  73. 73.
    Oliveira BG, Araújo RCMU, Pereira FS, Lima EF, Silva WLV, Carvalho AB, Ramos MN (2008) Quim Nova (in press)Google Scholar
  74. 74.
    Oliveira BG, Araújo RCMU, Carvalho AB, Ramos MN (2007) Quim Nova 30:1167–1170Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Boaz G. Oliveira
    • 1
    Email author
  • Regiane C. M. U. Araújo
    • 1
  • Antônio B. Carvalho
    • 1
  • Mozart N. Ramos
    • 2
  1. 1.Departamento de QuímicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de Química FundamentalUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations