Journal of Molecular Modeling

, Volume 15, Issue 2, pp 105–111 | Cite as

DFT study of a series of crown-4 ethers and their selectivity trend for alkali metal cations: Li+ and Na+

  • Hui Hou
  • Xingye Zeng
  • Xiaoping LiuEmail author
Original Paper


The molecular and electronic structures for 12- to 16-crown-4 (named 12C4, 13C4, 14C4, 15C4, 16C4, respectively) and 2,3,5,6,8,9-hexahydrobenzo[b][1,4,7,10]tetraoxacyclododecine (B12C4) 3,5,6,7,9,10-hexahydro -2H-benzo[e][1,4,7,10]tetraoxacyclotridecine (B13C4) and their complexes with alkali metal cations Li+ and Na+ have been explored using the density functional theory (DFT) with B3LYP/ 6–31G* method. The nucleophilicity of crown-4 ethers has been investigated by the Fukui function. Their selectivity trend shows that of all the crown-4 ethers, 14C4 shows the highest cation selectivity for Li+ over Na+, has been achieved on the basis of thermodynamic analysis. In addition, Li+/crown-4 series are more stable than Na+/crown-4 series in the gas phase. The calculated results are in good agreement with the experimental observation.


Cation selectivity Crown-4 ethers complexes Density functional theory (DFT) Thermodynamic analysis 



The support of Project of Guangdong Province Science and Technology Plan (Grant No. 2007B011000008) is gratefully acknowledged.


  1. 1.
    Pedersen CJ (1967) J Am Chem Soc 89:7017. doi: 10.1021/ja01002a035 CrossRefGoogle Scholar
  2. 2.
    Liu Y, You CC, Zhang HY (2001) Supramolecular Chemistry: Molecular Recognition and Assembly of Synthetic Receptors, vol. 12. Nankai Univ Press, Tianjin, China, p 49Google Scholar
  3. 3.
    Takeda Y (1980) Bull Chem Soc Jpn 53:2393. doi: 10.1246/bcsj.53.2393 CrossRefGoogle Scholar
  4. 4.
    Miyazaki T, Yanagida S, Itoh A, Okahara M (1982) Bull Chem Soc Jpn 55:2005. doi: 10.1246/bcsj.55.2005 CrossRefGoogle Scholar
  5. 5.
    Liu Y, Inoue Y, Hakushi T (1990) Bull Chem Soc Jpn 63:3044. doi: 10.1246/bcsj.63.3044 CrossRefGoogle Scholar
  6. 6.
    Inoue Y, Hakushi T, Liu Y, Tong LH (1993) J Org Chem 58:5411. doi: 10.1021/jo00072a024 CrossRefGoogle Scholar
  7. 7.
    Su CC, Lu LH, Liu LK (2003) J Phys Chem A 107:4563. doi: 10.1021/jp030030z CrossRefGoogle Scholar
  8. 8.
    Su CC, Lu LH (2004) J Mol Struct 702:23. doi: 10.1016/j.molstruc.2004.06.005 CrossRefGoogle Scholar
  9. 9.
    Hsieh TJ, Su CC, Chen CY, Liou CH, Lu LH (2005) J Mol Struct 741:193. doi: 10.1016/j.molstruc.2005.02.009 CrossRefGoogle Scholar
  10. 10.
    Takayuki N, Yasuyuki I, Kenichi D, Takayuki T, Noriyuki K (2006) Int J Quantum Chem 106:3278. doi: 10.1002/qua.21168 CrossRefGoogle Scholar
  11. 11.
    Macias AT, Norton JE, Evanseck JD (2003) J Am Chem Soc 125:2351. doi: 10.1021/ja0285971 CrossRefGoogle Scholar
  12. 12.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785. doi: 10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  13. 13.
    Becke AD (1993) J Chem Phys 98:5648. doi: 10.1063/1.464913 CrossRefGoogle Scholar
  14. 14.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFree DJ, Pople JA (1982) J Chem Phys 77:3654. doi: 10.1063/1.444267 CrossRefGoogle Scholar
  15. 15.
    Rassolov V, Pople JA, Ratner M, Windus TL (1998) J Chem Phys 109:1223. doi: 10.1063/1.476673 CrossRefGoogle Scholar
  16. 16.
    Nicholas JB, Hay BP, Dixon DA (1999) J Phys Chem 103:1394Google Scholar
  17. 17.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049. doi: 10.1021/ja00326a036 CrossRefGoogle Scholar
  18. 18.
    Boys SF, Bernardi F (1970) Mol Phys 19:553. doi: 10.1080/00268977000101561 CrossRefGoogle Scholar
  19. 19.
    Hill SE, Feller D (2000) Int J Mass Spectrom 201:41. doi: 10.1016/S1387–3806(00)00214–1 CrossRefGoogle Scholar
  20. 20.
    Anderson JD, Paulsen ES, Dearden DV (2003) Int J Mass Spectrom 227:63. doi: 10.1016/S1387–3806(03)00042–3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.College of ChemistryBeijing Normal UniversityBeijingChina
  2. 2.College of Science South China Agricultural UniversityWushanChina

Personalised recommendations