Skip to main content
Log in

Molecular modeling of the three-dimensional structure of GLP-1R and its interactions with several agonists

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Glucagon-like peptide-1 receptor (GLP-1R) is a promising molecular target for developing drugs treating type 2 diabetes. We have predicted the complete three-dimensional structure of GLP-1R and the binding modes of several GLP-1R agonists, including GLP-1, Boc5, and Cpd1, through a combination of homology modeling, molecular docking, and long-time molecular dynamics simulation on a lipid bilayer. Our model can reasonably interpret the results of a number of mutation experiments regarding GLP-1R as well as the successful modification to GLP-1 by Liraglutide. Our model is also validated by a recently revealed crystal structure of the extracellular domain of GLP-1R. An activation mechanism of GLP-1R agonists is proposed based on the principal component analysis and normal mode analysis on our predicted GLP-1R structure. Before the complete structure of GLP-1R is determined through experimental means, our model may serve as a valuable reference for characterizing the interactions between GLP-1R and its agonists.

Comparison of our predicted model of rGLP-1R (left) with the recently revealed crystal structure of hGLP-1R (right)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Murphy KG, Bloom SR (2007) Proc Natl Acad Sci USA 104:689–690. doi:10.1073/pnas.0610679104

    Article  CAS  Google Scholar 

  2. Drucker DJ (2007) Endocrinology 142:521–527. doi:10.1210/en.142.2.521

    Article  Google Scholar 

  3. Demuth HU, McIntosh CH, Pederson RA (2005) Biochim Biophys Acta 1751:33–44

    CAS  Google Scholar 

  4. Madsbad S, Schmitz O, Ranstam J, Jakobsen G, Matthews DR (2004) Diabetes Care 27:1335–1342. doi:10.2337/diacare.27.6.1335

    Article  CAS  Google Scholar 

  5. Chen DS, Liao JY, Li N, Zhou CH, Liu Q, Wang MW et al. (2007) Proc Natl Acad Sci USA 104:943–948. doi:10.1073/pnas.0610173104

    Article  CAS  Google Scholar 

  6. Knudsen LB, Kiel D, Teng M, Behrens C, Bhumralkar D, Kodra JT et al. (2007) Proc Natl Acad Sci USA 104:937–942. doi:10.1073/pnas.0605701104

    Article  CAS  Google Scholar 

  7. Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Nucleic Acids Res 33:36–38. doi:10.1093/nar/gki410

    Article  CAS  Google Scholar 

  8. Xiao Q, Jeng W, Wheeler MB (2000) J Mol Endoc 25:321–335. doi:10.1677/jme.0.0250321

    Article  CAS  Google Scholar 

  9. Philip Bourne TNB, Feng ZK, Gilliland G, Jain S, Ravichandran V, Schneider B et al. (2001) Nucleic Acids Res 29:214–218. doi:10.1093/nar/29.1.214

    Article  Google Scholar 

  10. Pearson WR (1990) Methods Enzymol 183:63–98. doi:10.1016/0076-6879(90)83007-V

    Article  CAS  Google Scholar 

  11. Marti-Renom MA, Stuart A, Fiser A, Sánchez R, Melo F, Sali A (2000) Annu Rev Biophys Biomol Struct 29:291–325. doi:10.1146/annurev.biophys.29.1.291

    Article  CAS  Google Scholar 

  12. Discovery Studio software (version 2.0) Accelyrs Inc. San Diego CA U.S.A. (2007)

  13. Bazarsuren A, Grauschopf U, Wozny M, Reusch D, Hoffmann E, Schaefer W et al. (2002) Biophys Chem 96:305–318. doi:10.1016/S0301-4622(02)00023-6

    Article  CAS  Google Scholar 

  14. Xiao Q, Jeng W, Wheeler MB (2000) J Mol Endoc. 25:321–335. doi:10.1677/jme.0.0250321

    Article  CAS  Google Scholar 

  15. Suleiman AS, Donnelly D (2003) FEBS Lett 553:342–346. doi:10.1016/S0014-5793(03)01043-3

    Article  CAS  Google Scholar 

  16. Maturana RL, Donnelly D (2002) FEBS Lett 530:244–248. doi:10.1016/S0014-5793(02)03492-0

    Article  Google Scholar 

  17. Runge S, Gram C, Hans BO, Madsen K, Knudsen LB, Wulff BS (2003) J Biol Chem 278:28005–28010. doi:10.1074/jbc.M301085200

    Article  CAS  Google Scholar 

  18. Pan CQ, Buxton JM, Yung SL, Tom I, Yang L, Chen HX et al. (2006) J Biol Chem 281:12506–12515. doi:10.1074/jbc.M600127200

    Article  CAS  Google Scholar 

  19. Adelhorst K, Hedegaard BB, Knudsen LB, Kirks O (1994) J Biol Chem 269:6276–6278

    Google Scholar 

  20. Gallwitz B, Witt M, Paetzold G, Wortmann CM, Zimmermann B, Eckart K et al (1994) Eur J Biochem 225:1151–1156. doi:10.1111/j.1432-1033.1994.1151b.x

    Article  CAS  Google Scholar 

  21. Wilmen A, Eyll BV, Goke B, Goke R (1997) Peptides 18:301–305. doi:10.1016/S0196-9781(96)00321-X

    Article  CAS  Google Scholar 

  22. Jones DT, Taylor WR, Thornton JM (1994) Biochemistry 33:3038–3049. doi:10.1021/bi00176a037

    Article  CAS  Google Scholar 

  23. Moller S, Croning MDR, Apweiler R (2001) Bioinformatics 17:646–653. doi:10.1093/bioinformatics/17.7.646

    Article  CAS  Google Scholar 

  24. Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A (1997) Protein Eng 10:673–676. doi:10.1093/protein/10.6.673

    Article  CAS  Google Scholar 

  25. Schultz J, Milpetz F, Bork P, Ponting CP (1998) Proc Natl Acad Sci USA 95:5857–5864. doi:10.1073/pnas.95.11.5857

    Article  CAS  Google Scholar 

  26. Arai M, Mitsuke H, Ikeda M, Xia JX, Kikuchi T, Satake M et al. (2004) Nucleic Acids Res 32:390–393. doi:10.1093/nar/gkh380

    Article  CAS  Google Scholar 

  27. Tusnady GE, Simon I (1998) J Mol Biol 283:489–506. doi:10.1006/jmbi.1998.2107

    Article  CAS  Google Scholar 

  28. von Heijne G (1992) J Mol Biol 225:487–494. doi:10.1016/0022-2836(92)90934-C

    Article  Google Scholar 

  29. Bagos PG, Liakopoulos TD, Hamodrakas SJ (2006) BMC Bioinform 7:189–206. doi:10.1186/1471-2105-7-189

    Article  CAS  Google Scholar 

  30. Hirokawa T, Boon-Chieng S, Mitaku S (1998) Bioinformatics 14:378–379. doi:10.1093/bioinformatics/14.4.378

    Article  CAS  Google Scholar 

  31. Persson B, Argos P (1997) J Protein Chem 16:453–457. doi:10.1023/A:1026353225758

    Article  CAS  Google Scholar 

  32. Pashou EE, Litou ZI, Liakopoulos TD, Hamodrakas SJ (2004) In Silico Biol 4:0012–0012

    Google Scholar 

  33. Taylor PD, Attwood TK, Flower DR (2003) Nucleic Acids Res 31:3698–3700. doi:10.1093/nar/gkg554

    Article  CAS  Google Scholar 

  34. Juretic D, Zoranic L, Zucic D (2002) J Chem Inf Comput Sci 42:620–632. doi:10.1021/ci010263s

    CAS  Google Scholar 

  35. Unson CG (2002) Biopolymers 66:218–235. doi:10.1002/bip.10259

    Article  CAS  Google Scholar 

  36. Maturana RL, Donnelly D (2002) FEBS Lett 530:244–248. doi:10.1016/S0014-5793(02)03492-0

    Article  Google Scholar 

  37. Runge S, Gram C, Brauner-Osborne H, Madsen K, Knudsen LB, Wulff BS (2003) J Biol Chem 278:28005–28010. doi:10.1074/jbc.M301085200

    Article  CAS  Google Scholar 

  38. Maturana RL, Willshaw A, Kuntzsch A, Rudolph R, Donnelly D (2003) J Biol Chem 278:10195–10200. doi:10.1074/jbc.M212147200

    Google Scholar 

  39. Suleiman AS, Donnelly D (2003) Br J Pharmacol 140:339–346. doi:10.1038/sj.bjp.0705453

    Article  CAS  Google Scholar 

  40. Gallwitz B, Witt M, Paetzold G, Wortmann CM, Zimmermann B, Eckart K et al. (1994) Eur J Biochem 225:1151–1156. doi:10.1111/j.1432-1033.1994.1151b.x

    Article  CAS  Google Scholar 

  41. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al. farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, V Rotiz J, Stefanov BB, Liu G, Liashenko A, Piskora P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, AlLaham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill MW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Gordon MH, Replogle ES, Pople JA Gaussian, Inc., Pittsburgh PA (2003)

  43. The SYBYL software (version 7.2) Tripos Inc., St. Louis, Missouri (2006)

  44. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748. doi:10.1006/jmbi.1996.0897

    Article  CAS  Google Scholar 

  45. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291

    Article  CAS  Google Scholar 

  46. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690. doi:10.1063/1.448118

    Article  CAS  Google Scholar 

  47. Berger O, Edholm O, Jähnig F (1997) Biophys J 72:2002–2013

    Article  CAS  Google Scholar 

  48. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  49. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341. doi:10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  50. Suhre K, Sanejouand YH (2004) Nucleic Acids Res 32:610–614. doi:10.1093/nar/gkh368

    Article  CAS  Google Scholar 

  51. Runge S, Thogersen H, Madsen K, Lau J, Rudolph R (2008) J Biol Chem 283:11340–11347. doi:10.1074/jbc.M708740200

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the financial supports from the Chinese National Natural Science Foundation (grants 20502031 & 20772149), the Chinese Ministry of Science and Technology (grant 2006AA02Z337), and the Science and Technology Commission of Shanghai Municipality (grants 06PJ14115 & 074319113).

Supporting information available

Three-dimensional structures of the GLP-1R models described in this manuscript are available from the authors upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renxiao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, F., Wang, R. Molecular modeling of the three-dimensional structure of GLP-1R and its interactions with several agonists. J Mol Model 15, 53–65 (2009). https://doi.org/10.1007/s00894-008-0372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0372-2

Keywords

Navigation